
Dynamic Body-Garment Simulation to Characterise 

Wearable Activity Recognition Performance 

Lars Ole HÄUSLER *1, Lena UHLENBERG 1, Oliver AMFT 1,2 

1 Intelligent Embedded Systems Lab, University of Freiburg, Freiburg, Germany; 
2 Hahn-Schickard, Freiburg, Germany 

https://doi.org/10.15221/25.40 

Abstract 

We propose an application of 4D modelling of human body and clothing to estimate the performance of 
wearable inertial sensors. While inertial sensors, e.g. accelerometers and gyroscopes, can be 
embedded into garments to capture activities of daily living (ADLs) of their wearer, clothes may move 
differently and have different orientations than the human body, potentially reducing human activity 
recognition (HAR) performance. In practice, it is challenging to estimate all error conditions that 
garments may introduce to wearable sensors, due to their varying body fit and sensor positioning. Thus, 
empirical evaluations provide limited insight into HAR performance in uncontrolled conditions.  

Recent scientific advancements in 4D surface modelling may offer a novel simulation approach to 
estimate HAR performance for cloth-embedded wearable inertial sensors. Approaches so far have 
primarily used body surface models to simulate body-attached inertial sensors, and thus did not account 
for the additional movement dynamics of garments. For example, a smartphone captures different 
signal patterns for activities, including walking, sitting, or jumping, when placed in a loose-fitting trousers 
pocket rather than a tight-fitted belt pocket.  

The goal of this work is to combine 4D garment and body surface models with inertial sensor models in 
a joint simulation approach that delivers HAR performance estimations ahead of any physical 
implementation of the wearable system. We employ textual ADL descriptions as specifications with a 
generative human motion model to obtain motion patterns. Subsequently, we use 3D Skinned Multi-
Person Linear (SMPL) models parametrised for different body sizes to represent full volumetric body 
and garment motion. We place virtual inertial measurement units (vIMUs) at well-known positions of 
body and garment models to demonstrate how the effect of garments can be analysed. By simulating 
vIMUs in selected ADLs, we synthesise acceleration and angular velocity data, which is used to train a 
HAR model. To evaluate our approach, we generate synthetic inertial sensor data with and without 
garment simulations for various garment types and body sizes. We then examine the impact on HAR 
accuracy across specific ADLs in a public dataset, comparing performances between body and garment 
sensor mounts, as well as the effects of garment type, size, and the performed activity. 

Our results show that inertial sensor synthesis is clearly affected by clothing, in particular for loose-
fitting garments. We detail HAR performance differences between garment and body-mounts 
depending on ADLs, body-garment fit, and vIMU positioning. Our approach may offer an alternative to 
train robust HAR models with synthetic sensor data and deal with clothing-related artefacts. 

Keywords: 4D body model, Machine learning, SMPL, Wearable sensors 

1. Introduction

Wearable technologies and Human Activity Recognition (HAR) have become indispensable for 
continuous health and activity monitoring and provide insights into physiological and behavioural states 
in daily life [1], [2]. In particular, HAR based on IMUs has several advantages over, e.g., video-based 
HAR, including protecting privacy and avoiding occlusion [3]. In addition, modern IMU sensors are 
already integrated in common smartphones and smartwatches and thus are used as a data source for 
sensor-based HAR tasks [1]. Furthermore, IMU sensors can be integrated into garments [4], which has 
been an active area of research for years. Garment simulations are useful to investigate different sensor 
placements, material properties, and motion artefacts in advance without having to build prototypes. 
With garment simulations, design decisions can be made more quickly and potential problems can be 
identified at an early stage [5]. 
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 While there is a considerable amount of research and datasets for HAR [1], [3], [6], [7], most studies 
assume that IMU sensors are tightly attached to the body and maintain stable alignment. However, 
when inertial sensors are integrated into clothing, the fabric can shift, stretch and vibrate independently 
of the underlying body, which results in discrepancies between actual body movements and sensor 
measurements. Artefacts caused by clothing can impair HAR performance, but remain difficult to 
quantify systematically. In addition, synthetic sensor data augmentation for HAR has gained popularity, 
in particular in combination with deep learning approaches that require extensive training data [8], [9], 
[10], [11]. So far, sensor data synthesis and other augmentation strategies have neglected cloth-
induced errors.  
 
In this paper, we integrate garment simulations in a text-based IMU synthesis approach, which builds 
on 4D body models and motion synthesis. We investigate the impact of garments on synthesised IMU 
data, and evaluate HAR performance on public data with smartphone IMU recordings with varying 
attachment conditions, e.g., devices carried in a loose pocket. 
 
In particular, the work provides the following contributions: 
 

1. We combine 4D garment and body surface models with inertial sensor models in a joint 
simulation approach for text-based generated movements. 

2. We systematically assess the influence of garment fit on synthesised IMU data and analyse 
how sensor location and activity type affect the IMU synthesis in tight-fitting and loose-fitting 
clothing compared to body-mounted IMUs. 

3. We evaluate HAR performance differences between body-mount vs. tight-fitting and loose-
fitting clothing on public HAR data against measured data. 

 
 
2. Related Work 

Deep learning architectures have enhanced recognition performance but depend on large training data. 
High-quality annotated training data is limited because the acquisition requires extensive expert labour. 
Considerable effort has been invested to utilise alternative data sources and augment model training. 
Common augmentation techniques include noise augmentation [5], mix-up augmentation [6], and 
generative adversarial networks [8], which aim to increase the robustness of HAR models. In addition, 
motion capture data and video recordings are employed for IMU sensor synthesis through 3D motion 
tracking  [8], [10], [12]. Incorporating surface model personalisation also enabled the inclusion of body 
morphology into the sensor data synthesis [11].  
 
Furthermore, deeper neural network models can be trained with less measured data [11]. Therefore, 
researchers aim to replace not only measured sensor data but also human movements themselves with 
synthetic motion. Guo et al. [13] introduced HumanML3D, a large dataset that contains diverse motion 
sequences represented as joint rotations and positions, paired with textual descriptions of the 
corresponding activities. By leveraging latent embeddings of the textual input, models trained on the 
dataset can generate and combine a wide variety of human activities based on natural language 
processing. HumanML3D was used to train text-based human motion synthesis models, e.g. T2M-GPT 
[14]. Leng et al. [9], [15] used T2M-GPT and proposed IMUGPT, a framework to synthesise 
accelerometer data. ChatGPT was leveraged to generate activity text prompts, which were 
subsequently input into T2M-GPT. Generated joint representations were transformed into acceleration 
data following the motion trajectories and calibrated using measured data to perform human activity 
classification on public datasets. Ray et al. [16] used Joints2SMPL [17] to translate joint representations 
into SMPL models [18] and generated synthetic pressure maps to classify human activities. 
 
In addition to research on data augmentation and motion synthesis, studies highlight the importance of 
smart garments and the integration of garments into existing simulations, e.g., [19]. Since IMUs are 
attached to the body surface rather than rigidly mounted, understanding the interactions between 
sensor placement, body motion, and garment behaviour is essential. 
Harms et al. [20] estimated posture recognition performance in smart garments using geometric wrinkle 
modelling. The results showed that poorer body-garment fit led to decreased classification for shoulder 
rehabilitation exercise postures. Michael & Howard [21] investigated the differences between sensors 
mounted on clothing vs. directly on the body. The authors demonstrated that activity recognition can 
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benefit from cloth-mounted sensors compared to body-mounted placements. Harms et al. [5] presented 
a modelling and simulation approach to predict sensor performance in smart garments. The authors 
evaluated internal strain, body-garment distance, and angular deviation. Comparison with results from 
an experimental study showed that the modelling and simulation approach is suitable for planning 
sensor placement and garment design prior to implementing garment prototypes.  
 
Patel et al. introduced TailorNet [22], a neural model that predicts 3D clothing deformations while 
retaining wrinkle details, and accounts for human shape, pose, and garment fit and size. The authors 
trained the model to predict fabric deformation on SMPL models [18] and showed that TailorNet can 
run 1000× faster than physics-based simulations while maintaining realistic results. Baronetto et al. [19] 
used TailorNet to dress 3D human body models with varying body shapes and three differently fitted 
smart T-shirts. The authors analysed the distance between the sensor and the body surface as well as 
the sensor displacement (sliding of the sensor) for a smart electrocardiogram T-shirt during the 
performance of dynamic ADLs. The study showed that the simulation method can be used to assess 
contact sensor performance for different body shapes, ADLs, and garment designs.  
 
Loose Inertial Poser [23] used TairlorNet to simulate a T-shirt on body models from the AMASS dataset 
and synthesised IMU data. The synthesised data was used to train an autoencoder that estimated 
human poses for IMUs attached to a jacket. Experimental results demonstrate that the approach 
maintains posture estimation even in loose-fitting scenarios. However, the study only used tall, thin 
SMPL preset body models. 
 
 
3. Methods 
 
3.1 Text-based human motion synthesis 

To generate textual descriptions of simulated ADLs, we provided ChatGPT with a general structure, 
length constraints and a few examples of the desired descriptions. We obtained ten descriptions for 
each ADL with variations that depend on, e.g., the simulated person's trajectories and speed. As an 
example, two generated prompts for the running activity are: "a person is slowly running", "a person is 
running through a corner". Similar to Leng et al. [9], [15] and Ray et al. [16], we used T2M-GPT [14] to 
generate human motion representations from the obtained descriptions. Motion representations consist 
of a sequence of 22 3D joint positions per second, with length variations between three and ten seconds. 
 
3.2 Surface model and garment generation 

To accurately model 4D human surfaces and garments, we applied generated motions to different 
SMPL models and dressed them accordingly. We used joints2smpl [17] to obtain the pose parameters 
θ corresponding to the generated motions by T2M-GPT. To simulate different participants performing 
the prompted activities, we used a custom set of shape parameters β to acquire eight different SMPL 
models (four female and four male). Body proportions were chosen to present the shortest and tallest 
models for each gender, one model for each gender with average measurements1, and one model for 
each with average height but an adipose Body Mass Index of 35. Pose parameters θ and shape 
parameters β were used to create triangulated meshes that represent our human surface models, which 
perform respective activities. 
 
To simulate the garments, we used TailorNet [22] due to scalability and accurate clothing deformations 
[19], [23]. For each of the eight SMPL models, we applied the male and female versions of a long-
sleeve shirt and long pants. We selected the respective TailorNet PCA parameters and generated two 
sets of garments for each model: one set with a tight fit and one with a loose fit. Fig. 1 and 2 depict 
examples of a male (see Fig. 1) and female (see Fig. 2) SMPL model with average measurements in 
two different poses, each with a tight-fitting and loose-fitting set of garments. Due to a lack of relative 
size scaling with the SMPL models, we excluded certain body models from our garment sets. For the 
tight-fitting set, we removed the short male and female models, as the clothes still appeared loose on 
them due to their body height. For the loose-fitting set, we excluded the adipose models, as the largest 
size parameters still resulted in a tight fit. 

 
1https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Gesundheit/ 
Gesundheitszustand-Relevantes-Verhalten/Tabellen/liste-koerpermasse.html 

3DBODY.TECH Journal - International Journal of 3D Body Technologies, Vol. 2, Dec. 2025

#40



 

 

 
Fig. 1. Male SMPL model with average measurements fitted with a long-sleeve shirt and long pants.  

A: Static pose with tight-fitting garments. B: Static pose with loose-fitting garments. C: Frame of jumping 
activity with tight-fitting garments. D: Frame of jumping activity with loose-fitting garments. 

 
Fig. 2. Female SMPL model with average measurements fitted with a long-sleeve shirt and long pants. 

A: Static pose with tight-fitting garments. B: Static pose with loose-fitting garments. C: Frame of jumping 
activity with tight-fitting garments. D: Frame of jumping activity with loose-fitting garments. 

 

3.3 IMU synthesis 

For IMU data synthesis from the human body of garment models, we selected nine vertices for each 
sensor location. A selection of the chosen virtual placements is depicted in Fig. 3. We selected the nine 
vIMUs for each sensor location to include variation in sensor placement and orientation. To obtain 
acceleration and angular velocity signals from vIMUs, we followed a similar approach as introduced by 
Uhlenberg et al. [11], [24]. Each vertex of the respective mesh can be described as a position vector 

��⃗ ��� � ��	���, �����, �����
  for any time t in a coordinate frame G in ��	�. The linear acceleration of 
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each vertex was calculated as the sum of the dynamic sensor acceleration ������⃗ ��� and the gravitational 
acceleration ������⃗ ��� exerted on the sensor device:  ����⃗ ��� �  ������⃗ ��� � ������⃗ ���. The dynamic acceleration ������⃗ ��� 

was calculated as the second time derivative of the position vector ��⃗ ���, and the gravitational 
acceleration ������⃗ ��� was obtained by multiplying the gravity contribution along each axis with the gravity 
constant: 

�������⃗ ��� � �2���⃗ ���
��2  ,   �������⃗ ��� � ������⃗ ��� ⋅ � 

with the unit vector �����⃗ ��� describing the gravity contribution along each axis of the sensor and � the 

gravity constant � � 9.81 !/#$. To acquire �����⃗ ���, the gravity-carrying (“up”) axis %⃗ was determined and 
multiplied by the inverse of the rotation matrix &'

( to align the gravity vector with the sensor frame S, 
according to �����⃗ ��� � �&'

( �)* ⋅ %⃗. To calculate the angular velocity +��⃗ ��� of the simulated sensor, the 
quaternion orientation estimates ,'

(of the rotation matrix &'
( were derived over time according to: 

+��⃗ ��� � ,-
.���⃗ ���
�� . 

.  
Fig. 3. Visualisation of vIMUs placed on the garments. A: Upper body with all nine vIMU locations 
of the chest and left upper arm visible. B: Lower body with all nine vIMUs of the left shank visible. 

 

3.4 HAR evaluation 

As a downstream application of the introduced joint simulation approach, we use the generated 
synthetic IMU data to train a machine learning model and evaluate it on a real-world HAR dataset. 
We chose the RealWorld dataset [7] for its detailed documentation of used sensors and their 
positioning. The vIMU locations (see Section 3.3) were chosen to match descriptions provided in the 
dataset. The head location was excluded due to a lack of available garments. Consequently, we use 
six locations for our analysis: left forearm, left upper arm, left shank, left thigh, chest, and waist. In total, 
we generated three synthetic datasets based on vIMU positioning: One with the vIMUs directly placed 
on the body of the SMPL models, one placed on the tight-fitting garment set, and one placed on the 
loose-fitting garments set. The generated activities included walking, running, sitting, lying, stairs down 
and jumping. We excluded the activities stairs up and standing from our evaluation because T2M-GPT 
frequently confused them with stairs down and sitting. Therefore, we removed the activities to focus our 
evaluation on the impact of garments. To improve the model's generalisation to axis rotations and noise, 
we employed data augmentation with all six possible axis permutations (x, y, z) and added Gaussian 
noise with a zero mean to the synthetic data, following [25]. We employed the widely used 
DeepConvLSTM [26] model architecture for our classification. The measured data of the RealWorld 
dataset was downsampled to 20 Hz to match the synthetic data and used in its entirety as the test set 
in our evaluation. All data were divided into 2-second segments, corresponding to 40 samples each, 
using a sliding window with 50% overlap. For classification, we use balanced accuracy of the model 
predictions as a reliable performance measure on imbalanced datasets. 
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4. Results 
 
4.1 Garment-induced IMU error 

Fig. 4 illustrates the influence of garment simulation and fit on the synthesis of IMU data for a jumping 
activity. The linear acceleration signals from the body-mounted and garment-mounted sensors followed 
similar patterns, with only minor deviations at the signal maxima. The loose-fitting garments produced 
the largest deviations from the body-mounted synthesised signals. In contrast, the tight-fitting garments 
exhibited similar signal patterns, with intermediate values between those of the body-mounted and 
loose-fitting conditions. Angular velocity of loose-fitting garments showed smaller z-axis maxima 
compared to the body-mounted placement. Moreover, smaller local maxima were observed for both 
tight-fitting and loose-fitting garments. 
 

 
Fig. 4. Comparison of synthesised data for linear acceleration and angular velocity of a 

vIMU placed at body, tight-, or loose-fitting garments. The timeseries excerpt shows jumping 
of a female model with average height and weight for a vIMU at the left shank. 

 

As the synthesised angular velocity data exhibits higher deviation and variance relative to the body-
mounted signals, we focus on the gyroscope modality for the subsequent analysis.  
 
Fig. 5 depicts the Mean Absolute Error (MEA) of the angular velocity between the tight-fitting garments 
and the body-mounted vIMUs. The average MAE between both sensor placements resulted in 12.9 °/s, 
but was highly dependent on the performed activity and vIMU location.The lowest error was observed 
in the sitting activity, with an average of 4.4°/s and the highest error in the running and jumping activities, 
with an average MAE of 29.4°/s each. Concerning the vIMU location, the error ranges from 8.3°/s at 
the left upper arm to 17.9°/s at the left forearm. 
 
Fig. 6 depicts MAE when comparing loose-fitting garments with their corresponding body-mounted 
locations. For loose-fitting garments, the overall MAE increased to 19.0 °/s. Similar to tight-fitting 
garments, the smallest error was observed for sitting (MAE: 8.2 °/s), and the highest error for running 
and jumping (MAE: 20.3 °/s and 20.2 °/s, respectively). The error varied depending on vIMU location, 
ranging from 11.9 °/s at the left upper arm to 25.7 °/s at the left forearm. 
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Fig. 5. Heatmap of the MAE of the synthesised angular velocity data for tight-fitting garments in comparison  

to body-mounted vIMUs for the same motion, depending on the vIMU location and performed activity. 
 

 
 

Fig. 6. Heatmap of the MAE of the synthesised angular velocity data for loose-fitting garments in comparison  
to body-mounted vIMUs for the same motion, depending on the vIMU location and performed activity. 

 
When comparing the error differences between tight-fitting and loose-fitting garments, we observed that 
the largest discrepancies occurred at location-activity combinations where the error of loose-fitting 
garments was the highest. The highest difference was observed at the left shank vIMU, with a maximum 
of 20.3°/s during the running activity. A notable exception was the chest location, where the error 
remained roughly the same for the tight- and loose-fitting garments.  
 
4.2 Downstream HAR Application 

Fig. 7 shows the HAR performance for ten runs when synthetic datasets from vIMU placed on body, 
tight-, or loose-fitting garments were used as training data for a realistic HAR classification task (see 
Sec. 3.4). The trained DeepConvLSTM models were subsequently evaluated on measured data from 
the RealWorld [7] dataset. The DeepConvLSTM model trained on synthetic data with the body-fitted 
vIMUs yielded an average balanced accuracy of 69.3%. The DeepConvLSTM model trained on the 
vIMUs placed on tight-fitting garments improved balanced accuracy to 76.3 %, which is a 10.1% 
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increase compared to the body-mounted vIMUs. Lastly, the model trained on loose-fitting garments 
achieved a similar average balanced accuracy of 75.6 %, which is a 9.1% increase compared to the 
body-mounted vIMUs. The standard deviation of the performance results from loose-fitting garments 
increased compared to the body-mounted results, but was reduced in comparison to the ones obtained 
from tight-fitting garments. 
 

 
Fig. 7. HAR performance results when training the DeepConvLSTM model on synthetic data of body, tight-, or 

loose-fitting garments and tested on measured data from the RealWorld [7] dataset on the following activities: 
Jumping, lying, running, sitting, walking, stairs down. 

 
 
5. Discussion  

We showed that garment simulations, in particular for loose-fitting clothes, clearly change IMU data 
compared to body-mounted sensors. We can observe that, especially for angular velocity, a looser 
garment fit translates into higher deviations from body-mounted sensors when high velocity movements 
occur (see Fig. 4). Our observation is consistent with the distribution of MAEs visualised in Fig. 5 and 
Fig. 6. High-velocity activities with a great range of movements, such as jumping and running, exhibit 
the highest MAEs. The lowest errors can be found for the sitting activity, where only minimal movement 
occurs. We attribute the differences to the complexity of garment dynamics. High-velocity movements 
result in additional effects, e.g., inertial lag and aerodynamic drag, which cause the garments to exhibit 
secondary motions independent from the body. In contrast, during static or low-velocity activities, the 
garment movements remained relatively close to the body, which results in a lower MAE compared to 
high-acceleration activities. In addition to secondary motions, another effect of garments is the 
occurrence of wrinkles and folds (see Fig.1 and Fig. 2). Depending on the garment fit and body pose, 
certain areas of the garments become compressed or stretched, which results in the formation and 
smoothing out of wrinkles or even folds. When a vIMU was located on a wrinkle, additional signal 
variation in the angular velocity could be observed, which further increased the overall MAE. An 
example of the impact of a small wrinkle on the synthesised angular velocity can be observed in Fig. 4, 
between the 20th and 30th frames, on the X and Y axes. 
 
The results of the error analysis generally agree with expectations and related literature that greater, 
faster movements cause greater errors between body- and garment-mounted sensors than static poses 
[19], [27]. We also provide quantitative insights into the errors, depending on the IMU and activities, 
which would be infeasible to derive from empirical evaluation on a large scale. 
 
As a downstream application of 4D modelling of the human body and garments, we used the synthetic 
IMU data generated from vIMU placements on the body, tight- and loose-fitting garments each to train 
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a machine learning model. The trained models were then used to classify activities from a public HAR 
dataset with measured data. Our results showed that incorporating garment simulations into the IMU 
data synthesis substantially increased the HAR performance (see Fig. 7). The highest balanced 
accuracy was achieved when training with vIMUs positioned on loose-fitting garments, with an 
improvement of 10.1% compared to body-mounted sensors. We attribute the increased performance 
to the characteristics of the RealWorld dataset [7] that was used as the test set. In the Realworld 
dataset, IMU data was collected using regular smartphones. The devices were positioned on 
participants' bodies either with a sports armband or by being placed inside a trouser pocket, shirt pocket, 
or bra. [7]. In particular, trousers and shirt pocket placements differ from a rigidly attached IMU on the 
body. Therefore, we believe that our garment simulation generates more realistic IMU data, which better 
matches the real-world measurements from the dataset. However, the model performance of the loose-
fitting garments was 0.9% lower than that of the tight-fitting garments. We believe the difference can be 
attributed to a combination of two factors: (1) Most sensors in the RealWorld dataset are still placed 
using sports armband, which are functionally more like a tight-fitting sensor, (2) while garment 
simulation generally improves realism, excessively loose clothing can introduce a high level of noise 
from secondary motions and fabric artefacts, which can negatively impact the classification task. 
 
Overall, we showed that our combined simulation provides an alternative method to train robust HAR 
models that are resilient to garment-related artefacts. The simulation further offers the estimation of 
performance changes on different garments by simulating specific body types, activities, and sensor 
placements before manufacturing physical prototypes. 
 
Future work may investigate the differences and impact of garments on HAR performance in more detail 
and determine the optimal garment fit for improved HAR results based on measured data. Furthermore, 
the introduced combined 4D modelling approach can be used to generate different synthetic datasets 
and analyse the impact of garment fit on both the training and testing sets. For instance, future work 
could investigate whether a model trained exclusively on synthetic body-mounted sensor data can 
generalise well to data from loose-fitting garments, and vice versa. 
 
Further improvements of the simulation approach could likely be achieved by incorporating more 
physics-based garment simulations. The physical modelling of forces, e.g., gravity and inertia, in the 
simulation process would enhance the realism and consistency of garment motions, and thereby 
generate more accurate synthetic data. Likewise, the properties of the virtual sensor could be included 
in the garment simulation with a defined size and mass, which impacts, e.g., wrinkle formation at the 
sensor locations. Another improvement could be achieved by enhancing the human motion generation 
and extending its training data to increase the collection of correctly synthesizable activities. 
 
 
6. Conclusion 

In this work, we introduced a joint simulation approach that combines 4D garment and body surface 
models with inertial sensor models. From text-based movement descriptions, we simulate diverse 
body–garment sets across different activities. We systematically analysed the influence of garment fits 
on the synthesised IMU data. In particular, we assessed how the location of a sensor and the performed 
activity affect IMU data synthesis in tight-fitting and loose-fitting clothing compared to body-mounted 
IMUs. In addition, we evaluated the performance differences of a HAR model between body-mounted 
vs. tight- and loose-fitting garments on public HAR data to predict the effect of clothing on model training 
ahead of any physical implementation. Our results indicate that garment simulations, particularly in the 
case of loose-fitting clothing, change synthetic IMU data relative to body-mounted sensors. IMU signal 
deviations increase as the garment fit becomes looser and activities become faster and involve a 
greater range of movement, compared to tight-fitting garments and slower activities. Furthermore, in 
our application example, the inclusion of garment simulations into the IMU data synthesis substantially 
increased HAR performance. Our combined simulation approach offers an alternative method to train 
HAR models that remain robust against garment-induced artefacts and estimate classification 
performances without any measured training data. 
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