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Abstract

Precise localization of anthropometric landmarks is essential in many applications --- including
computer graphics, computer vision, biomechanics, and morphometric studies. Current methods in
machine learning can produce dense correspondence with good global properties, but are poor at
localizing specific landmarks. Landmarks are the most important correspondences for many
applications and the only independently verifiable criteria. Here we propose a new method for localizing
landmarks using learned features that significantly outperforms the state of the art.

Our method learns refined features that characterize the intrinsic and extrinsic geometry around the
landmark, thereby making it easy to recognize and localize. We propose a novel loss function for
training using two functions to evaluate the likelihood of a vertex being a target landmark: the landmark
potential (?), which characterizes the likelihood of a vertex being a landmark and is computed by the
network from a given mesh, and the similarity function (D), which measures the distance from a
landmark, extrinsically or/and intrinsically, and provides supervision information for training. The
network is trained to optimize the correlation between the two functions so that vertices that have high
similarity with the target landmark also have high potential, and vice versa. In addition, we introduce
nuclear-norm minimization to compute an optimal span of refined features for landmarks among training
models. The resulting system is easy to implement and learns efficiently from a small number of meshes
with identified landmarks.

Our implantation is available at https:/github.com/yibojiao211/Learning to Predict Landmarks.
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1. Introduction

Human shape correspondence is an essential task for many areas in computer vision and computer
graphics, as well as in downstream applications ranging from video games to medicine. The problem is
to establish a point-to-point mapping between scans or 3D meshes, of different persons or the same
person in different poses. Once a correspondence is established, coordinates of points can serve as
shape variables for statistical analysis and other downstream applications.

With the advent of 3D imaging technologies, it is now possible to digitize the human body at high
resolution and obtain detailed shape information. To make full use of these data, the computer vision
and computer graphics communities have focused on creating dense correspondence. Impressive
results have been achieved [9,12,13,41]. This work, reviewed in the related work typically uses features
based on shape or appearance data, but with no intrinsic importance other than their ability to facilitate
the correspondence problem.

We focus on a special class of feature points called landmarks. As the colloquial usage of the word
‘landmarks’ suggests, they are important in their own right and used for guidance in the neighborhood
of a landmark. Human anatomical landmarks are associated with deep human anatomical structures,
and are essential in many applications, ranging from guiding surgery to dressing virtual clothing. More
generally, in biology, they facilitate a statistical theory of shape [4,10,17]. In anthropometry, landmarks
were studied extensively for measuring human body size and shape. As a result, precise definitions
and standards for the characteristics and locations of landmarks have been developed [15].

An important type of landmark is associated with a location on a human bone (‘bony landmark’). In
many individuals, these locations can only be found by human experts by palpating the bony
protuberances on the human body prior to scanning, which is a tedious and expensive process. Due to
these difficulties, only a small number of 3D scanning projects, notably, the CAESAR project [28], have
included human landmarking. These datasets provide the ground truth validation for correspondence
algorithms. In most cases, they serve as the only means of obtaining verifiable validation of a
correspondence algorithm.
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Figure 1 ASIS identified by different methods. Green: ground truth; Red: our method; Yellow: Deep Shells

For example, the Anterior Superior lliac Spine (ASIS) is an important bony landmark at the hip that is
difficult to identify based on intrinsic body shape alone, but is easy to identify by palpation. In Figure 1,
the yellow dot depicts the location found by Deep Shells [12], a state-of-the-art method; it is far from the
ground truth landmark, shown in green. As a preview, the prediction of our method, described in this
paper, is shown in red. Thus, the challenge of accurately identifying these important points has
remained unresolved in previous work.

In this paper, we propose a new method for identifying these important points, the anthropometric
landmarks. Our objective is to train a network to predict landmark locations from 3D scans using the
easily accessible geometric surface features. Our approach is based on refining features with deep
neural networks to improve the accuracy of locating landmarks, an idea initially introduced by [20]. At a
high level, we aim to refine the features such that all corresponding landmarks among training shapes
have similar refined features, and points that are both extrinsically and intrinsically close to landmarks
have similar refined features as landmarks. We propose two functions to evaluate the likelihood of a
vertex being a target landmark. The potential function P measures the likelihood in feature spaces,
which takes as a parameter the refined features produced by the network. The similarity function D
measures the likelihood extrinsically or/and intrinsically, such as Euclidean or geodesic distances; it
provides supervision information during training. We assume that landmark potential and similarity are
correlated, thus the goal of the network is to optimize the correlation so that vertices that have high
similarity with the target landmark also have high potential value and vice versa. The potential function
automatically has a minimum value at the landmark; in this way, designing the function is meaningful.
For any candidate human model, we can identify the vertex with the lowest potential as the landmark
location.

2. Background and Related Work

2.1. Anthropometry

Anthropometry is the study of human body measurement. Traditionally, anthropometric data is collected
through direct measurements using simple tools, such as rulers, calipers, and measuring tapes. Most
measurements are defined based on the landmarks. Over the years, consensus and standards have
been established regarding the locations of these landmarks [15].

With the advent of 3D scanning technology, many 3D anthropometric datasets have been developed.
The CAESAR project [28] developed the first large-scale 3D anthropometric dataset, which contains
5,000 scans collected from individuals across North America and Europe. In addition to the 3D scans,
it also included 73 landmarks hand-placed by experts, as well as traditional measurements. In
academia, smaller but publicly available datasets, such as SCAPE [1] and FAUST [3]have been
developed. These datasets provided dense point-to-point correspondence through fitting a template to
the individual scans, which have served as benchmarks for many research works on human shape
correspondence. In the FAUST dataset, painted markers and 17 manually placed landmarks were used
to aid with registration, although the specific locations of these landmarks were not released.

Placing landmarks on the human body requires a strong understanding of human anatomy and practical
experience, as it involves palpating the bony extrusions. Additionally, this process can be time-
consuming. This prompted some early works on estimating landmarks on body scans [2,23,42]. These
works focused either on easily identifiable landmarks or need much more work on individual analysis
[23,35]. In [2], the problem is formulated as a probabilistic inference problem and a Markov network is
trained to localize all 73 landmarks for the CAESAR scans. Reasonable results were achieved on a
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small test set, but the CAESAR training data contains small bumps at the landmark locations, which
may influence the prediction.

2.2. 2D keypoint detection

Locating anthropometric landmarks in 3D shapes shares similarities with keypoint detection and pose
estimation in 2D images. In 2D, keypoints can be any point of interest [8,22,33] with joint locations,
facial landmarks[45,46] and hand landmarks [34] being particularly useful for tracking humans in videos.
Early methods relied on the classification of salient image features. The literature on keypoint detection
and pose estimation is extensive, but for our purposes, we will focus on the methods that leverage deep
neural networks, which have shown great success.

Among the various approaches, regression-based methods have been particularly effective. Initially,
these methods directly regressed the coordinates of the keypoints. However, more recent and
successful techniques adopt a heatmap-based approach. Instead of directly predicting coordinates,
they regress a heatmap, often using a Gaussian distribution centered on the keypoint [7,16,39,40]. For
instance, Tompson et al. [39] constructed individual heatmaps for each joint and trained a network using
a simple mean-square-error loss. Another notable approach proposed by Sun et al.[36] is integral
regression, which employs an end-to-end differentiable objective function. These heatmap-based
methods have proven to be robust and accurate for keypoint detection and pose estimation.

In our work, we adopt a similar strategy of training separate networks for each landmark. However, due
to the nature of working with a 3D surface mesh, regressing a heatmap becomes challenging. Instead,
we maximize the correlation coefficient between two functions that capture local surface features and
position differences. This approach offers a simple yet efficient solution to address the task of landmark
localization in meshes.

2.3. Localizing by dense correspondence

Localizing anthropometric landmarks can be approached by addressing a stronger problem -- dense
shape correspondence. By obtaining a dense correspondence between two shapes and having the
ground truth landmarks for one shape, we can, in principle, derive the landmark locations in the other
shape.

Axiomatic methods for establishing point-to-point correspondence provide a baseline for landmark
localization [11,24,29], with many of them being based on functional maps [25]. In recent works, learning
techniques have been applied, resulting in improved accuracy [9,12,13,14,19,20,30,37]. Litany et al.
[21], introduced the idea of training a deep neural network to refine conventional surface descriptors,
such as the SHOT descriptor. More recently, Trappolini et al. [41] proposed a transformer-based
method. However, finding dense correspondences can be computationally intensive, particularly for
high-resolution scans. For learning-based methods, the challenge becomes even more pronounced
when training and testing with high-resolution real human scans that often contain partiality and noise.
Furthermore, while these dense correspondence methods have achieved good overall matching
results, they may fall short when it comes to the most critical landmark locations. We demonstrate this
in the result section.

Kovnatsky et al. [18] proposed a method for finding functional correspondence through matrix
completion. This method leverages the parsimony principle in statistical inference and model selection
[27], enforcing low rank and small norm to represent the correspondence matrix with a small number of
degrees of freedom. In our work, we also employ the parsimony principle and devise a cost function
based on the nuclear norm [6].

3. Method

3.1. Formulation

We label k training samples in total as [M;, M,,..., M, ], where M; is a mesh comprising an array of n;
vertex positions V; and a set of m; faces F;. M; can be raw output of a scanner (e.g., after surfacing with
marching cubes), but maybe noisy with holes, without a fixed topology. For the given mesh M;, we first
compute point-wise SHOT descriptors [38], S; for each vertex. Let G; be the input feature of M;, and Gy
be the feature of the j-th point of M;. Gy is formulated by concatenating the Si; and 3D position of the

point, Vi,- K is the dimension of the SHOT descriptor, it can be represented as:

pre—process

S
Mi [VL] =G; = [Gi1 "'Gin] € REK+3)xn
13
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We take this concatenated matrix as input of the network, in other words, the unrefined features. Let
the parameters the neural network be 6,the refined features are:

G/ = fo(G) =G}, .-G, ] = fo(Gi) - fo(Gi,)]
Specifically, we represent unrefined features of the target landmark of M; by L, let the index of the
target landmark be ! for shape M;,G;, = L;, then
G =G, .Gy, .Gy, |

=[G, .. L; .Gy,
We define the landmark matrix £ of the k training samples to be formulated by all unrefined features
of landmarks of the k samples, then

L=[Ly..L,]
Furthermore, we design our potential and similarity functions to be point-wise scalar values, then we
optimize correlation. The pipeline of our training is shown below in Figure 2.

I Refined Feature I | Potential |
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)
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Figure 2 Overview of the general training framework. Input point-wise SHOT G, L and extrinsic information
V, L from training meshes. G, L are passed through a neural network made of identical operation blocks [32] to get
refined features G*,L*, which are further used for computing potential functions. Meanwhile, extrinsic/intrinsic
information produces the similarity functions. With point-wise potential and similarity values, the correlation
between the two functions contributes to the loss function ly. User-defined components in our framework are
operation blocks, potential, similarity, and loss functions, a simple example of choices is shown in section 4.3.

3.2. Potential and similarity functions

We define two functions to measure the likelihood of a vertex being the target landmark. The potential
function P computes refined feature space likelihood and thus takes a parameter of refined features.
The similarity function D computes extrinsic/intrinsic distances, which are provided in the training data
and work as supervision labels. For testing samples, similarity function values are unknown, thus our
goal is to extract refined features by learning. As a result, the learned features capture the nature of the
geometry of input meshes and can be used to evaluate the landmark likelihood without further
information. Our method trains a neural network so that potential and similarity functions are highly
correlated.

Please note that due to the typical convention in machine learning to minimize functions, we define the
potential and similarity functions with a sign opposite to that of common usage. That is, low values of
"potential" mean a point is likely to be landmark and low values of "similarity” mean that a point is similar
to a landmark.
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3.3. Optimizing correlations and nuclear norms

We choose DiffusionNet [32] as a part of the learning architecture. The naive approach to feature
refinement is to simply solve the problem by regression. The potential and similarity functions are
simply point-wise £2-norm of refined feature and pre-computed Euclidean/geodesic distance to the
target landmark, and we can use the MSE loss between the two functions. We initially experimented
with this approach.

Instead, we choose the coefficient of correlation as the cost function because we are concerned with
both the direction of change and the degree of consistency between the potential and similarity
functions. This approach allows us to regress a heatmap without the need to set up a heatmap on the
3D surface, which is both difficult and inefficient. On the other hand, the naive way of minimizing the
mean square error between the functions only takes into account their numerical differences. However,
since the two functions are measured differently - one in the feature space and the other in Euclidean
or geodesic distance - it is more effective to measure their relative direction of change rather than the
pointwise numerical difference.
Recall that £* = f,(£) = [£L;, ..., L;], which are all refined features of target landmark of k training
samples. Nuclear-norm-based models were proposed to solve image restoration and denoising
problems [43,44]. Prior works exploited low-rank properties of patch groups to capture similarities inside
batches and injected low-rank priors to capture the nature of high dimensional data [31]. The low-rank
model has been proven to be able to extract and analyze features that are linearly dependent and
sparse [5]. In this work, we consider low-rank properties that exist in landmarks because of similar
geometry, thus we optimize the nuclear norm of features. The goal of injecting low-rank priority is to
train a network so that refined features of landmarks are similar for all shapes.
Since L£* gathers all refined descriptors from all training shapes, by injecting low-rank properties, we
minimize the rank of £*,which is equivalent to minimizing £°-norm of singular values of £*, [la(L*)ll,. In
[6], it had been proven that £°-norm minimization can be solved by #-relaxation, thus with #-norm
relaxation, we minimize nuclear norm of £*:

minrank(L*)

& lla(L)llo

k
& o)l = Y 1o,
i=1
© min||L*]], = llIfe (Ol
Relying on the geometrical similarity for landmarks, adding low-rank priors helps to find 6 so that our
network refines input features in a way that maximally captures the nature of similarity between
landmark points among different shapes. However, simply optimizing the nuclear norm of L* has a trivial
solution of 8 = 0, we use nuclear norm minimization as a constraint to our loss objective. We can also
add constraints to the above program so that the refined features are not only similar to raw input
features but also have low-rank properties. Thus, we solve:

AL + 2,11£7 = LII3
To evaluate point-wise potential, we simply compute the distance between the point to the target
landmark, for input G; and point i on the shape, the potential value is:

* * * * 2
?(Gji'ﬁj) = |Lj - Gii

(1)
2
To involve both intrinsic and extrinsic information for similarity function, we compute weighted addition
of geodesic distance or Euclidean distance and SHOT differences:
2 2

D(G, £;) = cexllVy, = LI, + canllSy, = £l (@)
We combine correlation and low-rank priority to formulate the loss function:

lossg = —A.coef (P, D) + LNL I, + A, 1L* — L|I3 3)

This formulation helps to maximize the correlation between point-wise potential and similarity function
values and adds low-rank priors at the same time. In this way, we optimize 6 so that (a) the refined
features of landmarks span low-dimensional subspaces and (b) non-landmark features differ from
landmark features in a way that is close to extrinsic distances.
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3.4. Pipeline Overview

For training, we used the CEASAR dataset which contains landmark labels. We used Equation (1) only
in training phase and £* and G* are refined features of landmarks and all points. At testing time, only
refined features of all points were used. These features are trained to maximize the correlation function
such that points close to the training landmark have small potential values and points far away from the
landmark have large potential values. When testing, the refined features also have this property. This
is equivalent to have a constant £* in Equation (1). Therefore, we can simply compute the point-wise
potential value as the norm of the refined feature. The point with the minimal potential value is the
predicated landmark on each testing shape.

4. Results

4.1. Implementation Details

We used 4 blocks of DiffusionNet in the network to compute potential. The input dimension of features
is 355 (352 for SHOT and 3 for position); the output can be varied. In order to add the #2-norm
regularization term (the last term of Equation 3), the output dimension of DifussionNet must also be
355; adding this term is optional. To reduce the computational burden of the training process we chose
the output dimension to be 8. This could be reduced further; we found that even making the output
dimension to be 1 gives very good results. We choose 4, = 0.95, and other weights to be summed to
0.05. We trained using 50 shapes of removed FAUST scan rather than FAUST registration, each shape
has about 120K vertices. Our method is efficient to predict and train with such high-resolution shapes.
We will provide code with the published paper to generate the results in the paper. The provided code
can run with CPU.

4.2. Landmark potential

For testing the network, we computed the point-wise potential values for different landmarks. Figure3
provides a visualization of the potential over a scan, with color-coded values. Point estimates are
computed by taking the mean of points with the top 1% of the values (colored blue in the close-up in
the second row) and shown in red. Unlike correspondence-based localization, we have evaluated all
vertices on the mesh. For geometry factor-dominated landmarks, our method localizes the prediction
to a very small area, thus producing a very precise result. For landmarks that require palpation to
measure, the area of localization is relatively large, and the minima of potential functions might be
slightly far away from the ground truth. However, for such landmarks, our method still outperforms the
methods of shape matching, and has a reasonable amount of error. Furthermore, one can use the
potential distribution to improve the result because outliers are easily detected. In other words,
unreasonable low potential values can be easily filtered, and using barycentric coordinates with points
of low potential values instead of returning the minima can help to improve the localization.

Sellion Nuchale Rt. ASIS Rt. Olecranon Lt. Acromion Lt. Knee Crease

Potential ) R ‘ 2 { \
values \ Y n

/3 ‘L‘} a S
Closeup view - o
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Figure 3 Visualization of point-wise potential values of an example shape. The first row contains color-coded shapes
for potential values and red spheres as our predictions. The second row contains closeup views of landmark areas,
the top candidate points are colored blue. Red: our results, green: ground truths, yellow: Deep Shell correspondences
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4.3. Robustness to pose change

We evaluated the point estimates of different landmarks on in different poses that were not used for

training. Figure 4 shows scans in four different poses of the same subject. The landmarks are quite
robust even with holes in the scans.

Figure 4 Estimators of predicted landmarks on shapes of various poses. Blue: Sellion, green: Rt. Olecranon,
yellow: Lt. Acromion, red: Rt. ASIS, cyan: Lt. Knee Crease, magenta: Nuchale

4.4. Localization accuracy

Early learning-based methods were supervised, requiring extensive amounts of dense 3-D labelling
data and presenting substantial challenges. Consequently, recent efforts have predominantly
concentrated on unsupervised approaches, which have yielded better results compared to supervised
alternatives. For instance, DeepShells [12] outperforms 3D-CODED [13], FMNet [20], and GeoFMNet
[9].

For each of the target landmarks, we trained the network separately and recorded the error of
localization. The error was compared to that of landmarks predicted by Deep Shells, a representative
of the current state-of-the-art methods for computing dense correspondences. The results are shown
in Table 1. Our method has a smaller error for almost all landmarks, typically by a large margin.
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Table 1. Error of our method and Deep Shells. All values are average errors among all 70 testing samples for
both methods. DS stands for Deep Shells for finding point-wise correspondences, units of mm.

Landmark DS Ours Landmark DS Ours
1 Sellion 11.5 3.05 38 Rt. Dactylion 24.5 2.87
2 Rt. Infraobital 11.2 4.56 39 Rt. Ulna Styloid 10.6 5.83
3 Lt. Infraobital 11.9 2.08 40 Rt. Metacarpal Phal. V 15.1 5.68
4 Supramenton 9.86 1.89 41 Lt. Acromion 6.93 4.19
5 Rt. Tragion 7.29 2.41 42 Lt. Axilla, Ant 8.01 6.83
6 Rt. Gonion 7.33 3.42 43 Lt. Radial Styloid 24.2 2.85
7 Lt. Tragion 8.86 4.19 44 Lt. Axilla, Post 12.5 10.4
8 Lt. Gonion 4.90 2.13 45 Lt. Olecranon 15.7 6.42
9 Nuchale 2.96 4.18 46 Lt. Humeral Lateral Epicn 14.1 7.41
10 Rt. Clavicle 2.73 3.36 47 Lt. Humeral Medial Epicn 15.2 4.64
11 Suprasternale 9.13 8.02 48 Lt. Radiale 14.7 7.49
12 Lt. Clavicle 4.31 2.85 49 Lt. Metacarpal Phal. Il 22.4 15.6
13 Rt. Thelion 7.33 2.37 50 Lt. Dactylion 80.5 2.55
14 Lt. Thelion 8.45 4.26 51 Lt. Ulnar Styloid 23.8 6.35
15 Substernal 10.6 8.76 52 Lt. Metacarpal Phal. V 221 3.61
16 Rt. 10th Rib 18.1 6.97 53 Rt. Knee Crease 4.71 5.95
17 Rt. ASIS 19.8 11.5 54 Rt. Femoral Lateral Epicn 4.75 4.45
18 Lt. 10th Rib 15.4 8.39 55 Rt. Femoral Medial Epicn 6.64 5.68
19 Lt. ASIS 13.9 9.76 56 Rt. Metatarsal Phal. V 8.95 4.67
20 Rt. lliocristale 11.1 9.48 57 Rt. Lateral Malleolus 9.82 6.87
21 Rt. Trochanterion 14.4 10.9 58 Rt. Medial Malleolus 11.9 6.56
22 Lt. lliocristale 11.4 8.76 59 Rt. Sphyrion 91.6 5.73
23 Lt. Trochanterion 10.4 10.2 60 Rt. Metatarsal Phal. | 11.4 9.16
24 Cervicale 7.69 5.33 61 Rt. Calcaneous, Post 9.44 9.39
25 10th Rib Midspine 10.8 9.38 62 Re. Digit Il 11.5 10.7
26 Rt. PSIS 8.93 8.14 63 Lt. Knee Crease 4.67 2.52
27 Lt. PSIS 9.02 8.27 64 Lt. Femoral Lateral Epicn 6.74 4.38
28 Waist 12.9 6.54 65 Lt. Femoral Medial Epicn 7.16 3.84
29 Rt. Acromion 21.9 4.55 66 Lt. Metatarsal Phal. V 16.1 3.73
30 Rt. Axilla, Ant 10.2 6.87 67 Lt. Lateral Malleolus 9.48 5.11
31 Rt. Radical Styloid 11.1 2.09 68 Lt. Medial Malleolus 9.09 6.59
32 Rt. Axilla, Post 16.3 9.35 69 Lt. Sphyrion 8.96 5.73
33 Rt. Olecranon 10.2 8.88 70 Lt. Metatarsal Phal. | 4.49 4.28
34 Rt. Humeral Lateral Epicn 8.58 3.44 71 Lt. Calcaneous, Post 9.46 7.89
35 Rt. Humeral Medial Epicn 12.5 4.26 72 Lt. Digit Il 11.9 2.96
36 Rt. Radiale 8.73 7.79 73 Crotch 16.2 7.82
37 Rt. Metacarpal Phal. Il 11.1 10.9

To evaluate and compare our proposed method and other state-of-art methods that compute dense
shape correspondences we compared FMNet [20], Deep Shells [12], and transmatching [41]. The
results are shown in Table 2. In this study, we trained with 50 FAUST scan shapes and tested with 50
FAUST scans and 50 CAESAR scan shapes. We noticed that there are small bumps on the CAESAR
meshes that might affect our learning process, therefore we add an extra step of remeshing to the pre-
processing operation in order to remove any factors by bumps of the scans and indices of vertices. We
used the isotropic explicit remeshing algorithm proposed in [26]. We selected 6 landmarks that are easy
to hand-place on FAUST scans and important for template fitting in order to compare all methods.
Table 2. We compare FMNet, Deep Shells, transmatching, and our method by training with 50 FAUST scan
shapes, and testing with 50 FAUST scans that were not used for training (labeled "FS') and 50 CAESAR scans
(labeled "C'). All shapes are normalized to having 2m? surface area for male shapes and 1.8m? for female
shapes. In this way the unit of errors in the table is meter.

Methods Fmnet | DeepShells | transmatching | Ours
Train on FAUST scan Test on
Landmarks FS C FS C FS C FS C
1 Sellion 0.075 0.138 0.013 0.025 0.035 0.127 0.007 0.004
41 Lt. Acromion 0.078 0.146 0.017 0.102 0.091 0.329 0.011 0.027
63 Lt. Knee Crease 0.064 0.187 | 0.049 0.056 0.051 0.139 0.012 0.012
9 Nuchale 0.058 0.107 | 0.032 0.011 0.027 0.232 0.008 0.023
16 Rt. ASIS 0.086 0.212 0.027 0.087 0.082 0.261 0.014 0.034
33 Rt. Olecranon 0.052 0.158 0.026 0.064 0.095 0.366 0.025 0.009
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For the 3 dense shape correspondence methods, the prediction of localization is computed by using
one template with ground truths of landmarks (for the CAESAR dataset, we used the included landmark
information, for FAUST scan data, landmarks are hand-placed on FAUST registration, and we use the
registration to obtain landmarks on FAUST scans for all shapes.). Dense correspondences of the
template shape and test shapes are then computed. For each pair of template and test shape, we first
obtain all points that are within the 2cm? area of landmarks on the template and their matching points.
We then use the matching points on the test shape to compute the average distance to the landmark
on the test shapes. For our method, we simply select the top 1% points of the highest potential and
calculate the distance between the average point and the landmark ground truth. Table 2 shows that
our method outperforms all the other methods, in many cases by an order of magnitude.

5. Conclusion

We proposed a new method based on feature refinement for predicting anthropometric landmarks. Our
method handles high-resolution real scans of human bodies, that may suffer from partial data and noise.
Instead of computing point-wise correspondences, our method takes advantage of the architecture of
the DiffusionNet and refines SHOT descriptors to predict target landmarks of choice. We show that our
method outperforms other state-of-the-art methods for high-resolution real scans and is able to localize
landmarks for inter-dataset shapes.

We proposed a novel loss function for training, using two functions to evaluate the likelihood of a vertex
being a target landmark: a landmark potential that is learned and used for identifying the landmark, and
a similarity function that provides supervision information for training. We also introduced a nuclear
norm term with regularization to find low-rank solutions. Our results show that this approach is highly
effective, and can learn from a small amount of data (e.g., 50 scans with landmark information).

Even though we focused on identifying these important landmark points in this paper, our method may
also benefit from finding dense correspondence between human bodies by providing an additional
source of information derived from bony landmarks identified by experts. We leave this for future work.
In general, our results develop a bridge between recent machine learning methods for computing
correspondences and the wealth of knowledge and applications of classical anthropometric methods.
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