
Learning to Predict Anthropometric Landmarks 
via Feature Refinement 

Yibo JIAO 1, Chang SHU 2, Dinesh K. PAI 1 
1 University of British Columbia, Vancouver BC, Canada; 

2 National Research Council Canada, Canada 

https://doi.org/10.15221/24.47 

Abstract 

Precise localization of anthropometric landmarks is essential in many applications --- including 
computer graphics, computer vision, biomechanics, and morphometric studies. Current methods in 
machine learning can produce dense correspondence with good global properties, but are poor at 
localizing specific landmarks. Landmarks are the most important correspondences for many 
applications and the only independently verifiable criteria. Here we propose a new method for localizing 
landmarks using learned features that significantly outperforms the state of the art.  
Our method learns refined features that characterize the intrinsic and extrinsic geometry around the 
landmark, thereby making it easy to recognize and localize. We propose a novel loss function for 
training using two functions to evaluate the likelihood of a vertex being a target landmark:  the landmark 
potential (�),  which characterizes the likelihood of a vertex being a landmark and is computed by the
network from a given mesh, and the similarity function (�), which measures the distance from a
landmark, extrinsically or/and intrinsically, and provides supervision information for training. The 
network is trained to optimize the correlation between the two functions so that vertices that have high 
similarity with the target landmark also have high potential, and vice versa. In addition, we introduce 
nuclear-norm minimization to compute an optimal span of refined features for landmarks among training 
models. The resulting system is easy to implement and learns efficiently from a small number of meshes 
with identified landmarks. 
Our implantation is available at https://github.com/yibojiao211/Learning_to_Predict_Landmarks. 
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1. Introduction

Human shape correspondence is an essential task for many areas in computer vision and computer 
graphics, as well as in downstream applications ranging from video games to medicine. The problem is 
to establish a point-to-point mapping between scans or 3D meshes, of different persons or the same 
person in different poses. Once a correspondence is established, coordinates of points can serve as 
shape variables for statistical analysis and other downstream applications. 
With the advent of 3D imaging technologies, it is now possible to digitize the human body at high 
resolution and obtain detailed shape information. To make full use of these data, the computer vision 
and computer graphics communities have focused on creating dense correspondence.  Impressive 
results have been achieved [9,12,13,41]. This work, reviewed in the related work typically uses features 
based on shape or appearance data, but with no intrinsic importance other than their ability to facilitate 
the correspondence problem. 
We focus on a special class of feature points called landmarks. As the colloquial usage of the word 
‘landmarks’ suggests, they are important in their own right and used for guidance in the neighborhood 
of a landmark. Human anatomical landmarks are associated with deep human anatomical structures, 
and are essential in many applications, ranging from guiding surgery to dressing virtual clothing. More 
generally, in biology, they facilitate a statistical theory of shape [4,10,17]. In anthropometry, landmarks 
were studied extensively for measuring human body size and shape. As a result, precise definitions 
and standards for the characteristics and locations of landmarks have been developed [15]. 
An important type of landmark is associated with a location on a human bone (‘bony landmark’). In 
many individuals, these locations can only be found by human experts by  palpating the bony 
protuberances on the human body prior to scanning, which is a tedious and expensive process. Due to 
these difficulties, only a small number of 3D scanning projects, notably, the CAESAR project [28], have 
included human landmarking. These datasets provide the ground truth validation for correspondence 
algorithms. In most cases, they serve as the only means of obtaining verifiable validation of a 
correspondence algorithm. 
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Figure 1 ASIS identified by different methods. Green: ground truth; Red: our method; Yellow: Deep Shells 

For example, the Anterior Superior Iliac Spine (ASIS) is an important bony landmark at the hip that is 
difficult to identify based on intrinsic body shape alone, but is easy to identify by palpation. In Figure 1, 
the yellow dot depicts the location found by Deep Shells [12], a state-of-the-art method; it is far from the 
ground truth landmark, shown in green. As a preview, the prediction of our method, described in this 
paper, is shown in red. Thus, the challenge of accurately identifying these important points has 
remained unresolved in previous work. 
In this paper, we propose a new method for identifying these important points, the anthropometric 
landmarks. Our objective is to train a network to predict landmark locations from 3D scans using the 
easily accessible geometric surface features.  Our approach is based on refining features with deep 
neural networks to improve the accuracy of locating landmarks, an idea initially introduced by [20]. At a 
high level, we aim to refine the features such that all corresponding landmarks among training shapes 
have similar refined features, and points that are both extrinsically and intrinsically close to landmarks 
have similar refined features as landmarks. We propose two functions to evaluate the likelihood of a 
vertex being a target landmark. The potential function � measures the likelihood in feature spaces, 
which takes as a parameter the refined features produced by the network. The similarity function � 
measures the likelihood extrinsically or/and intrinsically, such as Euclidean or geodesic distances; it 
provides supervision information during training. We assume that landmark potential and similarity are 
correlated, thus the goal of the network is to optimize the correlation so that vertices that have high 
similarity with the target landmark also have high potential value and vice versa. The potential function 
automatically has a minimum value at the landmark; in this way, designing the function is meaningful. 
For any candidate human model, we can identify the vertex with the lowest potential as the landmark 
location. 

2. Background and Related Work 

2.1. Anthropometry 

Anthropometry is the study of human body measurement. Traditionally, anthropometric data is collected 
through direct measurements using simple tools, such as rulers, calipers, and measuring tapes. Most 
measurements are defined based on the landmarks. Over the years, consensus and standards have 
been established regarding the locations of these landmarks [15]. 
With the advent of 3D scanning technology, many 3D anthropometric datasets have been developed. 
The CAESAR project [28] developed the first large-scale 3D anthropometric dataset, which contains 
5,000 scans collected from individuals across North America and Europe. In addition to the 3D scans, 
it also included 73 landmarks hand-placed by experts, as well as traditional measurements. In 
academia, smaller but publicly available datasets, such as SCAPE [1] and FAUST [3]have been 
developed. These datasets provided dense point-to-point correspondence through fitting a template to 
the individual scans, which have served as benchmarks for many research works on human shape 
correspondence. In the FAUST dataset, painted markers and 17 manually placed landmarks were used 
to aid with registration, although the specific locations of these landmarks were not released. 
Placing landmarks on the human body requires a strong understanding of human anatomy and practical 
experience, as it involves palpating the bony extrusions. Additionally, this process can be time-
consuming. This prompted some early works on estimating landmarks on body scans [2,23,42]. These 
works focused either on easily identifiable landmarks or need much more work on individual analysis 
[23,35]. In [2], the problem is formulated as a probabilistic inference problem and a Markov network is 
trained to localize all 73 landmarks for the CAESAR scans. Reasonable results were achieved on a 
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small test set, but the CAESAR training data contains small bumps at the landmark locations, which 
may influence the prediction. 
 

2.2. 2D keypoint detection 

Locating anthropometric landmarks in 3D shapes shares similarities with keypoint detection and pose 
estimation in 2D images. In 2D, keypoints can be any point of interest [8,22,33] with joint locations, 
facial landmarks[45,46] and hand landmarks [34] being particularly useful for tracking humans in videos. 
Early methods relied on the classification of salient image features. The literature on keypoint detection 
and pose estimation is extensive, but for our purposes, we will focus on the methods that leverage deep 
neural networks, which have shown great success. 
Among the various approaches, regression-based methods have been particularly effective. Initially, 
these methods directly regressed the coordinates of the keypoints. However, more recent and 
successful techniques adopt a heatmap-based approach. Instead of directly predicting coordinates, 
they regress a heatmap, often using a Gaussian distribution centered on the keypoint [7,16,39,40]. For 
instance, Tompson et al. [39] constructed individual heatmaps for each joint and trained a network using 
a simple mean-square-error loss. Another notable approach proposed by Sun et al.[36] is integral 
regression, which employs an end-to-end differentiable objective function. These heatmap-based 
methods have proven to be robust and accurate for keypoint detection and pose estimation. 
In our work, we adopt a similar strategy of training separate networks for each landmark. However, due 
to the nature of working with a 3D surface mesh, regressing a heatmap becomes challenging. Instead, 
we maximize the correlation coefficient between two functions that capture local surface features and 
position differences. This approach offers a simple yet efficient solution to address the task of landmark 
localization in meshes. 
 

2.3. Localizing by dense correspondence 

Localizing anthropometric landmarks can be approached by addressing a stronger problem -- dense 
shape correspondence. By obtaining a dense correspondence between two shapes and having the 
ground truth landmarks for one shape, we can, in principle, derive the landmark locations in the other 
shape. 
Axiomatic methods for establishing point-to-point correspondence provide a baseline for landmark 
localization [11,24,29], with many of them being based on functional maps [25]. In recent works, learning 
techniques have been applied, resulting in improved accuracy [9,12,13,14,19,20,30,37]. Litany et al. 
[21], introduced the idea of training a deep neural network to refine conventional surface descriptors, 
such as the SHOT descriptor. More recently, Trappolini et al. [41] proposed a transformer-based 
method. However, finding dense correspondences can be computationally intensive, particularly for 
high-resolution scans. For learning-based methods, the challenge becomes even more pronounced 
when training and testing with high-resolution real human scans that often contain partiality and noise. 
Furthermore, while these dense correspondence methods have achieved good overall matching 
results, they may fall short when it comes to the most critical landmark locations. We demonstrate this 
in the result section. 
Kovnatsky et al. [18] proposed a method for finding functional correspondence through matrix 
completion. This method leverages the parsimony principle in statistical inference and model selection 
[27], enforcing low rank and small norm to represent the correspondence matrix with a small number of 
degrees of freedom. In our work, we also employ the parsimony principle and devise a cost function 
based on the nuclear norm [6]. 

3. Method 

3.1. Formulation 

We label � training samples in total as [	
, 	�, . . . , 	
], where 	� is a mesh comprising an array of �� 
vertex positions ��  and a set of �� faces ��. 	� can be raw output of a scanner (e.g., after surfacing with 
marching cubes), but maybe noisy with holes, without a fixed topology. For the given mesh 	�, we first 
compute point-wise SHOT descriptors [38], �� for each vertex. Let �� be the input feature of 	�, and ��� 
be the feature of the �-th point of 	�. ��� is formulated by concatenating the ���  and 3D position of the 

point, ��� . � is the dimension of the SHOT descriptor, it can be represented as: 

	�
����������� !!!!!!!!" #��

��
$ = �� = &��' … ��)* ∈ ℝ(-./)×1 
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We take this concatenated matrix as input of the network, in other words, the unrefined features. Let 
the parameters the neural network be 2,the refined features are: 

��∗ = 45(��) = &��'
∗ … ��)

∗ * = &45(��' ) … 45(��))* 
Specifically, we represent unrefined features of the target landmark of 	� by ℒ, let the index of the 
target landmark be 7 for shape 	�,��8 = ℒ�, then 

�� = &��' … ��8 … ��) * 
      = &��' … ℒ� … ��)* 

We define the landmark matrix ℒ of the � training samples to be formulated by all unrefined features 
of landmarks of the � samples, then 

ℒ = [ℒ
 … ℒ
] 
Furthermore, we design our potential and similarity functions to be point-wise scalar values, then we 
optimize correlation. The pipeline of our training is shown below in Figure 2. 

 
Figure 2 Overview of the general training framework. Input point-wise SHOT �, ℒ and extrinsic information 

�, 9 from training meshes. �, ℒ are passed through a neural network made of identical operation blocks [32] to get 
refined features �∗, ℒ∗, which are further used for computing potential functions. Meanwhile, extrinsic/intrinsic 
information produces the similarity functions. With point-wise potential and similarity values, the correlation 

between the two functions contributes to the loss function  75. User-defined components in our framework are 
operation blocks, potential, similarity, and loss functions, a simple example of choices is shown in section 4.3. 

3.2. Potential and similarity functions 

We define two functions to measure the likelihood of a vertex being the target landmark. The potential 
function � computes refined feature space likelihood and thus takes a parameter of refined features. 
The similarity function � computes extrinsic/intrinsic distances, which are provided in the training data 
and work as supervision labels. For testing samples, similarity function values are unknown, thus our 
goal is to extract refined features by learning. As a result, the learned features capture the nature of the 
geometry of input meshes and can be used to evaluate the landmark likelihood without further 
information. Our method trains a neural network so that potential and similarity functions are highly 
correlated.  
Please note that due to the typical convention in machine learning to minimize functions, we define the 
potential and similarity functions with a sign opposite to that of common usage. That is, low values of 
"potential" mean a point is likely to be landmark and low values of "similarity" mean that a point is similar 
to a landmark. 
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3.3. Optimizing correlations and nuclear norms 

We choose DiffusionNet [32] as a part of the learning architecture. The naive approach to feature 
refinement is to simply solve the problem by regression.  The potential and similarity functions are 
simply point-wise ℓ�-norm of refined feature and pre-computed Euclidean/geodesic distance to the 
target landmark, and we can use the MSE loss between the two functions. We initially experimented 
with this approach. 

Instead, we choose the coefficient of correlation as the cost function because we are concerned with 
both the direction of change and the degree of consistency between the potential and similarity 
functions. This approach allows us to regress a heatmap without the need to set up a heatmap on the 
3D surface, which is both difficult and inefficient. On the other hand, the naive way of minimizing the 
mean square error between the functions only takes into account their numerical differences. However, 
since the two functions are measured differently - one in the feature space and the other in Euclidean 
or geodesic distance - it is more effective to measure their relative direction of change rather than the 
pointwise numerical difference. 

Recall that ℒ∗ = 45(ℒ) = [ℒ
∗, … , ℒ
∗ ], which are all refined features of target landmark of � training 
samples. Nuclear-norm-based models were proposed to solve image restoration and denoising 
problems [43,44]. Prior works exploited low-rank properties of patch groups to capture similarities inside 
batches and injected low-rank priors to capture the nature of high dimensional data [31]. The low-rank 
model has been proven to be able to extract and analyze features that are linearly dependent and 
sparse [5]. In this work, we consider low-rank properties that exist in landmarks because of similar 
geometry, thus we optimize the nuclear norm of features. The goal of injecting low-rank priority is to 
train a network so that refined features of landmarks are similar for all shapes. 

Since ℒ∗ gathers all refined descriptors from all training shapes, by injecting low-rank properties, we 
minimize the rank of ℒ∗,which is equivalent to minimizing ℓ;-norm of singular values of ℒ∗, ‖=(ℒ∗)‖;. In 
[6], it had been proven that ℓ;-norm minimization can be solved by ℓ
-relaxation, thus with ℓ
-norm 
relaxation, we minimize nuclear norm of ℒ∗: 

min rank(ℒ∗) 

⇔ ‖=(ℒ∗)‖; 

⇔ ‖=(ℒ∗)‖
 = E|=�(ℒ∗)|



�G

 

⇔ min‖ℒ∗‖∗ = ‖45(ℒ)‖∗ 
Relying on the geometrical similarity for landmarks, adding low-rank priors helps to find 2 so that our 
network refines input features in a way that maximally captures the nature of similarity between 
landmark points among different shapes. However, simply optimizing the nuclear norm of ℒ∗ has a trivial 
solution of 2 = 0, we use nuclear norm minimization as a constraint to our loss objective. We can also 
add constraints to the above program so that the refined features are not only similar to raw input 
features but also have low-rank properties. Thus, we solve: 

I∗‖ℒ∗‖∗ + I�‖ℒ∗ − ℒ‖�� 

To evaluate point-wise potential, we simply compute the distance between the point to the target 
landmark, for input �L  and point M on the shape, the potential value is: 

�N�LO
∗ , ℒL∗P = QℒL∗ − �LO

∗ Q�
�
     (1) 

To involve both intrinsic and extrinsic information for similarity function, we compute weighted addition 
of geodesic distance or Euclidean distance and SHOT differences: 

�N�LO , ℒLP = R�SQ�LO − 9LQ�
� + R�1Q�LO − ℒLQ�

�
   (2) 

We combine correlation and low-rank priority to formulate the loss function: 

7TUU5 = −I�RTV4(�, �) + I∗‖ℒ∗‖∗ + I�‖ℒ∗ − ℒ‖��   (3) 

This formulation helps to maximize the correlation between point-wise potential and similarity function 
values and adds low-rank priors at the same time. In this way, we optimize 2 so that (a) the refined 
features of landmarks span low-dimensional subspaces and (b) non-landmark features differ from 
landmark features in a way that is close to extrinsic distances. 
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3.4. Pipeline Overview 

For training, we used the CEASAR dataset which contains landmark labels. We used Equation (1) only 
in training phase and ℒ∗ and �∗ are refined features of landmarks and all points. At testing time, only 
refined features of all points were used. These features are trained to maximize the correlation function 
such that points close to the training landmark have small potential values and points far away from the 
landmark have large potential values. When testing, the refined features also have this property. This 
is equivalent to have a constant ℒ∗ in Equation (1). Therefore, we can simply compute the point-wise 
potential value as the norm of the refined feature. The point with the minimal potential value is the 
predicated landmark on each testing shape. 

 

4. Results 

4.1. Implementation Details 

We used 4 blocks of DiffusionNet in the network to compute potential. The input dimension of features 
is 355 (352 for SHOT and 3 for position); the output can be varied. In order to add the ℓ�-norm 
regularization term (the last term of Equation 3), the output dimension of DifussionNet must also be 
355; adding this term is optional. To reduce the computational burden of the training process we chose 
the output dimension to be 8. This could be reduced further; we found that even making the output 
dimension to be 1 gives very good results. We choose I� = 0.95, and other weights to be summed to 
0.05. We trained using 50 shapes of removed FAUST scan rather than FAUST registration, each shape 
has about 120K vertices. Our method is efficient to predict and train with such high-resolution shapes. 
We will provide code with the published paper to generate the results in the paper. The provided code 
can run with CPU. 
 

4.2. Landmark potential 

For testing the network, we computed the point-wise potential values for different landmarks. Figure3 
provides a visualization of the potential over a scan, with color-coded values. Point estimates are 
computed by taking the mean of points with the top 1% of the values (colored blue in the close-up in 
the second row) and shown in red. Unlike correspondence-based localization, we have evaluated all 
vertices on the mesh. For geometry factor-dominated landmarks, our method localizes the prediction 
to a very small area, thus producing a very precise result. For landmarks that require palpation to 
measure, the area of localization is relatively large, and the minima of potential functions might be 
slightly far away from the ground truth. However, for such landmarks, our method still outperforms the 
methods of shape matching, and has a reasonable amount of error. Furthermore, one can use the 
potential distribution to improve the result because outliers are easily detected. In other words, 
unreasonable low potential values can be easily filtered, and using barycentric coordinates with points 
of low potential values instead of returning the minima can help to improve the localization. 

 
Figure 3 Visualization of point-wise potential values of an example shape. The first row contains color-coded shapes 
for potential values and red spheres as our predictions. The second row contains closeup views of landmark areas, 

the top candidate points are colored blue. Red: our results, green: ground truths, yellow: Deep Shell correspondences 

3DBODY.TECH Journal - International Journal of 3D Body Technologies, Vol. 1, Oct. 2024

#47



 

4.3. Robustness to pose change 

We evaluated the point estimates of different landmarks on in different poses that were not used for 
training. Figure 4 shows scans in four different poses of the same subject. The landmarks are quite 
robust even with holes in the scans. 

 
Figure 4 Estimators of predicted landmarks on shapes of various poses. Blue: Sellion, green: Rt. Olecranon, 

yellow: Lt. Acromion, red: Rt. ASIS, cyan: Lt. Knee Crease, magenta: Nuchale 

4.4. Localization accuracy 

Early learning-based methods were supervised, requiring extensive amounts of dense 3-D labelling 
data and presenting substantial challenges. Consequently, recent efforts have predominantly 
concentrated on unsupervised approaches, which have yielded better results compared to supervised 
alternatives. For instance, DeepShells [12] outperforms 3D-CODED [13], FMNet [20], and GeoFMNet 
[9]. 
For each of the target landmarks, we trained the network separately and recorded the error of 
localization. The error was compared to that of landmarks predicted by Deep Shells, a representative 
of the current state-of-the-art methods for computing dense correspondences.  The results are shown 
in Table 1. Our method has a smaller error for almost all landmarks, typically by a large margin. 

 

 

 

 

 

 

3DBODY.TECH Journal - International Journal of 3D Body Technologies, Vol. 1, Oct. 2024

#47



Table 1. Error of our method and Deep Shells. All values are average errors among all 70 testing samples for 
both methods. DS stands for Deep Shells for finding point-wise correspondences, units of mm. 

Landmark  DS  Ours  Landmark  DS  Ours 

1 Sellion  11.5  3.05  38 Rt. Dactylion  24.5  2.87 

2 Rt. Infraobital  11.2  4.56  39 Rt. Ulna Styloid  10.6  5.83 

3 Lt. Infraobital  11.9  2.08  40 Rt. Metacarpal Phal. V  15.1  5.68 

4 Supramenton  9.86  1.89  41 Lt. Acromion  6.93  4.19 

5 Rt. Tragion  7.29  2.41  42 Lt. Axilla, Ant  8.01  6.83 

6 Rt. Gonion  7.33  3.42  43 Lt. Radial Styloid  24.2  2.85 

7 Lt. Tragion  8.86  4.19  44 Lt. Axilla, Post  12.5  10.4 

8 Lt. Gonion  4.90  2.13  45 Lt. Olecranon  15.7  6.42 

9 Nuchale  2.96  4.18  46 Lt. Humeral Lateral Epicn  14.1  7.41 

10 Rt. Clavicle  2.73  3.36  47 Lt. Humeral Medial Epicn  15.2  4.64 

11 Suprasternale  9.13  8.02  48 Lt. Radiale  14.7  7.49 
12 Lt. Clavicle  4.31  2.85  49 Lt. Metacarpal Phal. II   22.4  15.6 

13 Rt. Thelion  7.33  2.37  50 Lt. Dactylion  80.5  2.55 
14 Lt. Thelion  8.45  4.26  51 Lt. Ulnar Styloid  23.8  6.35 
15 Substernal  10.6  8.76  52 Lt. Metacarpal Phal. V  22.1  3.61 
16 Rt. 10th Rib  18.1  6.97  53 Rt. Knee Crease  4.71  5.95 

17 Rt. ASIS  19.8  11.5  54 Rt. Femoral Lateral Epicn  4.75  4.45 
18 Lt. 10th Rib  15.4  8.39  55 Rt. Femoral Medial Epicn  6.64  5.68 
19 Lt. ASIS  13.9  9.76  56 Rt. Metatarsal Phal. V  8.95  4.67 
20 Rt. Iliocristale  11.1  9.48  57 Rt. Lateral Malleolus  9.82  6.87 
21 Rt. Trochanterion  14.4  10.9  58 Rt. Medial Malleolus  11.9  6.56 

22 Lt. Iliocristale  11.4  8.76  59 Rt. Sphyrion  91.6  5.73 
23 Lt. Trochanterion  10.4  10.2  60 Rt. Metatarsal Phal. I  11.4  9.16 
24 Cervicale  7.69  5.33  61 Rt. Calcaneous, Post  9.44  9.39 
25 10th Rib Midspine  10.8  9.38  62 Re. Digit II  11.5  10.7 
26 Rt. PSIS  8.93  8.14  63 Lt. Knee Crease  4.67  2.52 

27 Lt. PSIS  9.02  8.27  64 Lt. Femoral Lateral Epicn  6.74  4.38 
28 Waist  12.9  6.54  65 Lt. Femoral Medial Epicn  7.16  3.84 
29 Rt. Acromion  21.9  4.55  66 Lt. Metatarsal Phal. V  16.1  3.73 
30 Rt. Axilla, Ant  10.2  6.87  67 Lt. Lateral Malleolus  9.48  5.11 
31 Rt. Radical Styloid  11.1  2.09  68 Lt. Medial Malleolus  9.09  6.59 

32 Rt. Axilla, Post  16.3  9.35  69 Lt. Sphyrion  8.96  5.73 
33 Rt. Olecranon  10.2  8.88  70 Lt. Metatarsal Phal. I  4.49  4.28 
34 Rt. Humeral Lateral Epicn  8.58  3.44  71 Lt. Calcaneous, Post  9.46  7.89 
35 Rt. Humeral Medial Epicn  12.5  4.26  72 Lt. Digit II  11.9  2.96 
36 Rt. Radiale  8.73  7.79  73 Crotch  16.2  7.82 

37 Rt. Metacarpal Phal. II  11.1  10.9    

To evaluate and compare our proposed method and other state-of-art methods that compute dense 
shape correspondences we compared FMNet [20], Deep Shells [12], and transmatching [41]. The 
results are shown in Table 2. In this study, we trained with 50 FAUST scan shapes and tested with 50 
FAUST scans and 50 CAESAR scan shapes. We noticed that there are small bumps on the CAESAR 
meshes that might affect our learning process, therefore we add an extra step of remeshing to the pre-
processing operation in order to remove any factors by bumps of the scans and indices of vertices. We 
used the isotropic explicit remeshing algorithm proposed in [26]. We selected 6 landmarks that are easy 
to hand-place on FAUST scans and important for template fitting in order to compare all methods. 

Table 2. We compare FMNet, Deep Shells, transmatching, and our method by training with 50 FAUST scan 
shapes, and testing with 50 FAUST scans that were not used for training (labeled `FS') and 50 CAESAR scans 

(labeled `C'). All shapes are normalized to having 2�� surface area for male shapes and 1.8�� for female 
shapes. In this way the unit of errors in the table is meter. 

Methods Fmnet Deep Shells transmatching Ours 
Train on FAUST scan Test on 

Landmarks FS C FS C FS C FS C 
1 Sellion 0.075 0.138 0.013 0.025 0.035 0.127 0.007 0.004 

41 Lt. Acromion 0.078 0.146 0.017 0.102 0.091 0.329 0.011 0.027 
63 Lt. Knee Crease 0.064 0.187 0.049 0.056 0.051 0.139 0.012 0.012 
9 Nuchale 0.058 0.107 0.032 0.011 0.027 0.232 0.008 0.023 

16 Rt. ASIS 0.086 0.212 0.027 0.087 0.082 0.261 0.014 0.034 
33 Rt. Olecranon 0.052 0.158 0.026 0.064 0.095 0.366 0.025 0.009 
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For the 3 dense shape correspondence methods, the prediction of localization is computed by using 
one template with ground truths of landmarks (for the CAESAR dataset, we used the included landmark 
information, for FAUST scan data, landmarks are hand-placed on FAUST registration, and we use the 
registration to obtain landmarks on FAUST scans for all shapes.). Dense correspondences of the 
template shape and test shapes are then computed. For each pair of template and test shape, we first 
obtain all points that are within the 2R�� area of landmarks on the template and their matching points. 
We then use the matching points on the test shape to compute the average distance to the landmark 
on the test shapes. For our method, we simply select the top 1% points of the highest potential and 
calculate the distance between the average point and the landmark ground truth. Table 2 shows that 
our method outperforms all the other methods, in many cases by an order of magnitude. 

5. Conclusion 

We proposed a new method based on feature refinement for predicting anthropometric landmarks. Our 
method handles high-resolution real scans of human bodies, that may suffer from partial data and noise. 
Instead of computing point-wise correspondences, our method takes advantage of the architecture of 
the DiffusionNet and refines SHOT descriptors to predict target landmarks of choice. We show that our 
method outperforms other state-of-the-art methods for high-resolution real scans and is able to localize 
landmarks for inter-dataset shapes. 
We proposed a novel loss function for training, using two functions to evaluate the likelihood of a vertex 
being a target landmark: a landmark potential that is learned and used for identifying the landmark, and 
a similarity function that provides supervision information for training. We also introduced a nuclear 
norm term with regularization to find low-rank solutions. Our results show that this approach is highly 
effective, and can learn from a small amount of data (e.g., 50 scans with landmark information). 
Even though we focused on identifying these important landmark points in this paper, our method may 
also benefit from finding dense correspondence between human bodies by providing an additional 
source of information derived from bony landmarks identified by experts. We leave this for future work. 
In general, our results develop a bridge between recent machine learning methods for computing 
correspondences and the wealth of knowledge and applications of classical anthropometric methods. 
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