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Abstract 

Respiratory masks are highly used in healthcare and industrial environments to protect individuals from 
airborne contaminants and infectious pathogens. However, conventional respiratory masks are often 
one-sized, therefore it becomes challenging to fit diverse facial morphologies. If loosely fit, the mask 
may not adequately safeguard or be over-tight to achieve protection, which could cause discomfort or 
even generate pressure wounds over extended wear.   

This project aims to propose an artificial intelligence approach for the design and customization of 
respiratory masks, emphasizing customized products to better fit into the variety of human face 
morphology. The proposed approach begins with the creation of facial geometries using 3D facial data 
obtained by using the ARKit framework. ARKit allows to acquire a structured and complete mesh of the 
subject's face despites incomplete and noisy data. Each facial scan captures 5,023 3D points, providing 
a detailed map of individual facial features. The resulting dataset, including 60 different facial scans, 
forms the basis of our machine learning algorithm. This algorithm is designed to improve the 
customization and fit of respiratory masks, enhancing wearer safety and comfort. From this facial 
modelling, a deep learning model designed to predict the deformations of a mask when fitted to the face 
was deployed. The model enables the identification of potential areas of pressure and mask misfits, 
predicting problems before they become critical. A predictive model was further introduced to simulate 
the interaction between the facial structure and the mask as closely as possible. Combining scanning 
technologies and predictive modelling will alleviate the detection of gaps and pressure points, enabling 
preventive measures to be taken to rectify these defects. Due to an in-depth understanding of these 
interactions, the newly developed model proposes modifications to the mask design to better match the 
unique contours of each face, thus improving the mask's seal and comfort.   
This research might contribute to improve fitting and address important health protection issues and 
accelerate safety regulation compliance, thereby lessening health risks related to the long-term use of 
poorly fitted masks. Adequate fitting might have an important impact on the design of personalized 
protective equipment. 
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1. Introduction

Respiratory masks play a crucial role in protecting against hazardous airborne contaminants in both 
healthcare and industrial environments. These devices are essential for preventing infections caused 
by pathogens in medical environments, and for protecting workers from chemical pollutants posing 
various health risks in industrial settings [1,2]. Although occupational health and safety regulations 
require personal protective equipment, including respiratory masks, to follow safety standards, the 
conventional “one size fits all” design of these masks does not consider the different facial morphologies 
of users, compromising their effectiveness and comfort, particularly during prolonged wear [3,4].  
Faced with this problem, our study proposes an innovative approach using artificial intelligence to 
personalize respiratory masks. By combining 3D facial scanning, finite element analysis and deep 
learning, we develop customized masks that fit perfectly to the unique contours of each face. Our 
research aims to set up a method capable of predicting facial deformation under the mask and providing 
these results in real time when ordering a mask via a mobile application. 
This article is structured as follows: the first section presents a review of related work. The second 
section details our project's method, including the generation and processing of facial mesh data and 
the development of our deep-learning model. The third section presents the results obtained, 
highlighting the accuracy of our dataset and the effectiveness of our prediction model. Finally, the 
conclusion summarizes the main contributions of our work and discusses future implications for the 
design of personalized protective equipment 
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2. Related work 

In our earlier work, our team developed a personalized mask adapted to the morphology of the user's 
face. This customization was made possible by a mobile application that scanned the face and created 
the mask geometry. Their study combined 3D scanning with finite element analysis to assess the mask's 
performance, while confirming the numerical results through experimental measurements of pressure 
and spacing [5]. Machine learning models were applied to predict pressures at the mask-face interface 
and adjust mesh points according to the degree of clamping. Among these models, the Random Forest 
Regressor showed superior accuracy compared with the Decision Tree Regressor and Elastic Net 
models. However, these approaches met challenges, notably the integration of facial morphology into 
model training and the management of protection gaps due to incomplete data.  

 
Fig. 1. Protocol for Mask Fit Simulation 

The advancement in transforming unstructured and incomplete 3D point clouds into detailed meshes is 
significantly driven by the development of 3D morphable models (3DMMs) [6,7,8,9]. These models 
allow for the creation of precise and adaptable shapes. By employing adjustable and morphable 
reference models, researchers can keep consistency and enhance the integration of scanning 
technologies with advanced mesh generation techniques. 3DMMs facilitate the filling of gaps in scanned 
data, helping to generate detailed and exact three-dimensional representations.  
 

A main drawback from earlier work is that most studies assure a rigid fit and very little work focus on 
non-rigid deformation in shape transformation learning. Graph Convolution Networks (GCN) [10] and 
CDPNet have been proposed for learning non-rigid shape transformations [11]. GCN processes 
relational data within a graph structure, ideal for analysing non-rigid deformations. CDPNet predicts 
post-deformation transformations of 3D objects, maintaining structural integrity under various conditions. 
P2P-NET [12] offers a generalized approach to learning various shape transformation tasks, while its 
derivative, P2MAT-Net [13], transforms point clouds into sets of medial spheres, although it requires 
further refinement to understand global shape properties.  
 
3. Methodology 

3.1. Creation of Structured and Complete Facial Mesh Databases from ARKit scan 

The ARKit framework has significantly advanced the capability to capture 3D scans of human faces. 
However, despite efforts to minimize noise and address incomplete data, challenges remain in creating 
structured and complete facial meshes [14]. To address this issue, we propose a method that integrates 
the average face from the FLAME database as a reference to enhance the ARKit scan data [15]. The 
FLAME database is a statistical 3D model of the human face that captures a wide range of facial shapes, 
expressions, and poses. It is constructed by learning from a large dataset of 3D scans and is designed 
to stand for facial geometry using a low-dimensional parameter space. Integrating the average face 
from the FLAME database as a reference in this method provides a robust and consistent template that 
can significantly improve the quality of ARKit scan data. This method involves the extraction of facial 
landmarks, mesh alignment, and transformation techniques to generate a structured and complete 
facial mesh 
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3.1.1. Landmarks extraction 

The first step involves extracting 100 facial landmarks from the ARKit scan. We start by manually 
selecting 68 reference landmarks of the face. However, these first 68 landmarks do not accurately 
capture the full facial morphology. To address this, we employ the Geodesic Ensemble Surface 
Sampling Algorithm (GESSA) to add more landmarks. GESSA begins by randomly sampling points 
across the facial surface and then improves their distribution to achieve uniformity. This optimization 
process maximizes the entropy in the landmark distribution, ensuring a detailed capture of the 
morphological variability [16]. 

 
Fig. 2 Landmarks from ARKit scan 

3.1.2. Mesh Alignment 

Once the landmarks are identified, the next step is aligning the ARKit landmarks with the reference face 
using the Iterative Closest Point (ICP) algorithm. This process begins with proving initial landmark and 
reference face vertices correspondences. The ICP algorithm then iteratively refines the alignment by 
repeatedly matching corresponding points between the two meshes, estimating the best transformation 
(rotation and translation) to minimize the distance between these points, and applying this 
transformation to the ARKit mesh. This procedure iterates until the algorithm converges by reaching the 
best transformation [17].  
 

3.1.3. Mesh Generation 

Following the alignment, the landmarks on the reference face are selected using the nearest neighbour 
algorithm. The transformation between the ARKit landmarks and the reference landmarks is computed 
using the Thin Plate Spline (TPS) algorithm. The TPS algorithm is particularly suited for capturing non 
rigid deformation, since it works by modeling the transformation needed to bend a thin plate spline from 
one shape into another, adhering to certain fixed points. It minimizes the energy needed to achieve this 
bending, ensuring a smooth and continuous transformation [18]. This computed transformation is then 
applied to the entire reference face, resulting in a complete and structured mesh that accurately stands 
for the morphology of the scanned face. This transformation ensures that the final mesh captures the 
unique facial features of each user, which is particularly crucial for applications such as the 
customization of respiratory masks. The proposed method yields precise and structured facial meshes 
that will be used to train a deep learning model to predict the deformation of the face after waring the 
mask.  
 

3.2. Deep learning model for Respiratory Mask Fitting 

TPS-Net was developed to optimize the customization and fitting of respiratory masks by accurately 
predicting facial structure deformations upon mask application. This network is specifically designed to 
manage non-rigid transformations between 3D facial meshes, both pre- and post-mask application. By 
learning smooth and continuous geometric transformations, TPS-Net utilizes a neural network to 
precisely map facial points to their new positions after mask wear. The model is trained using a 
combination of Chamfer distance, which evaluates alignment accuracy, and a regularization term that 
ensures smooth transformations. This approach is particularly effective for accurately aligning source 
and target points, essential for fitting masks to diverse facial morphologies. To validate TPS-Net's 
performance, various evaluation metrics are employed, including Chamfer Distance, Mean Squared 
Error (MSE), and Mean Absolute Error (MAE). These metrics ensure that the model achieves precise 
and smooth transformations, with lower Chamfer distances showing better alignment and MSE, MAE 
providing additional measures of alignment accuracy. 
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4. Results and discussions 

4.1. Creation of Structured and Complete Facial Mesh Databases from ARKit scan 

The generation of the facial mesh from ARKit scan landmarks with the reference face from the FLAME 
database was performed using various algorithms to figure out the most effective approach for this task. 
In this study, the ARKit face scan, captured with high precision, served as the reference comparator 
against which the performance of each method was evaluated. The performance of each method was 
evaluated using metrics such as Root Mean Square Error (RMSE), Mean Absolute Error (MAE), 
Standard Deviation of Errors (STD), and Hausdorff Distance of Errors (HDE) -a measure of the 
maximum distance between points in one set and the nearest points in another set, reflecting the 
maximum possible error. The results, summarized in the table below, prove the effectiveness of each 
method:  

Table 1: Comparison of the four facial mesh generation algorithms. 

Method RMSE (mm) MAE (mm) STD (mm) HDE (mm) 

ICP 0.037 0.022 0.030 0.183 

TPS 0.037 0.021 0.030 0.184 

ICP+TPS 0.033 0.019 0.027 0.165 

Flame 1.610 1.510 0.565 0.181 

 
Figure 5 provides visual comparisons of the generation results for ICP, TPS, and the combined 
ICP+TPS approach. The images clearly illustrate that TPS and ICP+TPS methods provide more exact 
generations compared to ICP and Flame. The TPS method shows superior performance in aligning the 
landmarks closely with minimal gaps. With the ICP, TPS and Flame, we notice the significant gaps 
between the points in certain regions, showing poor representation of morphological variations. But with 
ICP+TPS, the points are more closely aligned, showing a better fit and more exact representation of 
the facial morphology. The TPS method captures non-rigid deformations effectively, which is crucial for 
accurately representing facial morphology. In contrast, the ICP method, being a rigid transformation, 
does not adequately account for morphological variations, leading to larger gaps between point sets in 
certain regions. The FLAME model, however, produced poor results due to suboptimal parameter 
optimization and its limited use of only 100 landmarks, which is insufficient to accurately capture the 
detailed features and variations in facial morphology. The high RMSE and MAE values observed for 
the FLAME model reflect this limitation. 
 

 
A) Mesh created with ICP alignment   

 
B) Mesh created with TPS alignment 

  
C)  Mesh created with ICP+TPS alignment      

    
D) Mesh created with Flame 

Fig. 5 Comparative Analysis of Mesh Generation technique 
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4.2. Thin Plate Spline Networks TPS-NET for Respiratory Mask Fitting 

In our study, the dataset was distributed with 80% used for training, 10% for validation, and the 
remaining 10% dedicated to testing. This distribution aligns with established practices commonly 
referenced in literature. To provide a comprehensive evaluation of our model's performance, we 
conducted a comparative analysis with Coherence Point Drift Network (CPD-Net), a well-recognized 
point-to-point network.  
Table 2 presents the averaged results for all models tested. We report the root mean square error 
(RSME), mean absolute error (MAE), and Chamfer distance—a metric that quantifies the similarity 
between two-point clouds by averaging the nearest point distances between sets. The TPS-NET model 
achieved the lowest error across all metrics, showing its superior performance in predicting facial 
deformations. The Point-to-point network also performed well but showed higher errors compared to 
TPS-NET. The CPDNET model had the highest errors, suggesting less effectiveness for this specific 
application. Adding a learning rate decay strategy provided more flexibility to the networks by reducing 
the learning rate by 50% after every 50 epochs, enhancing the convergence characteristics in the later 
stages of training. The rigorous training and testing regimen ensured robust evaluation of each model. 
Comparing the results, TPS-NET significantly outperformed the other models, achieving an RSME of 
0.0005 mm, an MAE of 0.0002 mm, and a Chamfer distance of 0.0225 mm. These values show the 
model's ability to accurately predict facial deformations, crucial for applications where precise geometric 
adjustments are necessary. 

Table 2: Performance Comparison of Facial Deformation Prediction Models in millimeters (mm) 

Model RSME (mm) MAE (mm) Chamfer distance (mm) 

TPS-NET 0.0005 0.0002 0.022 

Point-to-point network 0.0017 0.0003 0.033 

CPDNET 0.0706 0.0582 0.046 

 
 

5. Conclusion and Future Work 

The goal of this study was to propose and to evaluate a new fitting algorithm, designed for respiratory 
masks. This has important implications for health and safety in both medical and industrial settings, 
potentially reducing the risks associated with prolonged mask usage and ensuring better compliance 
with safety regulations. Future work will focus on further refining the models and expanding the dataset 
to include a wider variety of facial morphologies, thereby enhancing the generalizability and robustness 
of the proposed solutions. 
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