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Abstract 

Obtaining accurate 3D reconstructions of the human foot from 2D images holds significant importance 
in various fields, including anthropometry, footwear design, and medical diagnostics. In this study, we 
propose a novel neural network-based approach for reconstructing a 3D mesh of the foot from a single 
image. Our method integrates multiple sources of information, including binary segmentation masks 
and 2D keypoint estimation. By leveraging Principal Component Analysis (PCA) to represent foot 
morphology in a low-dimensional space, we infer the parameters needed for 3D mesh reconstruction, 
including rotation and translation parameters for alignment with the input image. Our approach builds 
upon recent advancements in deep learning for 3D reconstruction from images and demonstrates 
promising results in accurately capturing foot morphology. The model has been trained with two 
datasets: one consisting of 1M synthetic samples and another with 500K augmented real samples. 
Validation on a test subset of over 674 samples resulted in a PA-MPJPE (Procrustes-Aligned Mean Per 
Joint Position Error) of 0.9 mm. Furthermore, the real-time capability of our method makes it suitable 
for applications in augmented reality, such as virtual try-on and improvements in user experience and 
precision of phone-based foot scanning solutions. 

Keywords: anthropometry, footwear design, size recommendation, 3D foot, foot reconstruction, real 
time 

1. Introduction

The human foot, with its intricate structure and complex biomechanics, plays a crucial role in our daily 
lives. Understanding its morphology is essential in various fields, including medicine, sports science, 
and footwear design [1], [2], [3], [4], [5]. Accurate 3D modeling of the foot is fundamental for diagnosing 
and treating foot-related conditions, improving athletic performance, and designing comfortable and 
ergonomic footwear. Traditionally, acquiring 3D foot models has relied on techniques like 3D scanning, 
which, while accurate, can be expensive and time-consuming, often requiring specialized equipment 
and expertise [6], [7]. 

Subsequently, methodologies based on parametric shape models emerged, enabling the reconstruction 
of the foot using only a few images [4], [5]. These developments have revolutionized the way we capture 
and analyze foot morphology, making the process more scalable and accessible to a broader audience, 
making it possible to find the most suitable footwear model for your feet, the best size or to get 
personalized insoles, shoes or boots [8], [9], [10], [11], [12]. 

Recent advancements in computer vision and deep learning have opened doors to explore new efficient 
and accessible methods for 3D shape reconstruction using a single 2D image [13], [14]. Building on 
these advancements, this research focuses on developing a novel method capable of generating a 3D 
mesh of the foot from a single 2D image. Unlike conventional methods that directly regress vertex 
positions [15], [16], [17], our approach leverages the power of statistical shape modeling [18], [19]. More 
specifically, the network learns to infer the parameters of a Principal Component Analysis (PCA) [20] 
model, which represents the 3D foot shape as a linear combination of principal components. This 
approach allows for a more compact and generalizable representation of the 3D shape, reducing the 
complexity and improving the robustness of the model. Additionally, the network estimates the rotation 
and translation parameters, enabling accurate pose estimation within the 3D space. This dual 
estimation ensures that the reconstructed foot model is not only anatomically accurate but also correctly 
oriented and positioned in the 3D coordinate system.  

The implications of this work are significant. The efficiency of our model enables real-time applications, 
opening possibilities in augmented reality (AR). This can revolutionize virtual try-ons and interactive 
fitting systems, providing consumers with instant, accurate visualizations of how footwear will fit and 
look. Moreover, it has the potential to create better phone-based foot scanning experiences making it 
faster, simpler and more accurate. Overall, the integration of deep learning techniques with traditional 
statistical models represents a promising direction for advancing the field of 3D foot reconstruction. 
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2. Related work 

Estimating a 3D human mesh from a single image is a challenging task that has been extensively 
studied in the field of computer vision and machine learning. The existing methods can be broadly 
categorized into two groups: parametric and non-parametric approaches. 
 

Parametric methods rely on a predefined 3D human body model, such as the Skinned Multi-Person 
Linear (SMPL) model [21], to estimate the 3D mesh. These methods typically involve optimizing the 
model parameters to fit the input image. For example, Kanazawa et al. [22] proposed an end-to-end 
framework that uses a convolutional neural network (CNN) to predict the SMPL model parameters from 
a single image. Similarly, Pavlakos et al. [23] used a CNN to estimate the 3D human pose from keypoint 
estimation and shape from segmentation using a single image, and then fitted the SMPL model 
parameters to the estimated pose and shape. Other parametric methods have used different 3D human 
body models, such as the SCAPE model [24] or the Adam model [25]. For instance, Dibra et al. [26] 
used a CNN to estimate the SCAPE model parameters using silhouettes from heat kernel signature 
(HKS) [27]. 
 

Non-parametric methods, on the other hand, do not rely on a predefined 3D human body model. Instead, 
they use a data-driven approach to estimate the 3D mesh from the input image. For example, Lin et al. 
[16] used a CNN and a Graph Convolutional Neural Network to predict a 3D point cloud from a single 
image, and then used a mesh reconstruction algorithm to obtain the 3D mesh. Similarly, Onizuka et al. 
[15] used a CNN to predict a 3D occupancy grid from a single image, and then used a marching cubes 
algorithm to obtain the 3D mesh. In the context of human body mesh estimation from video, You et al. 
[28] directly regress the mesh vertices using spatial-temporal image features and 3D pose information. 
 

Recent advancements have also explored the use of generative models and implicit neural 
representations for 3D reconstruction. Neural Radiance Fields (NeRFs), for example, have been 
employed to generate high-fidelity 3D reconstructions from multi-view images [29]. Additionally, 
Occupancy Networks [30] and Implicit Differentiable Renderer (IDR) [31] represent surfaces implicitly 
and have shown promise in reconstructing detailed 3D shapes from sparse data. Despite their potential, 
these methods require multi-view inputs or volumetric data, which can be limiting in scenarios with only 
a single view available. 
 

While these approaches have demonstrated remarkable success in 3D human pose and shape 
estimation, they often focus on the entire body and may not capture the intricate details of the foot. 
Furthermore, directly regressing vertex positions can be computationally expensive and may lead to 
inconsistencies in the generated meshes. 

3. Method 

Our proposed method addresses these limitations by combining the strengths of statistical shape 
modeling and deep learning. The network architecture follows the typical classic encoder-decoder 
structure showed in Figure 1. In our design, both the encoder and decoder components have been 
modularized independently to allow for flexibility and adaptability according to specific requirements. 
This modularization enables easy interchangeability of different encoder and decoder architectures, 
catering to diverse needs in terms of performance and accuracy. 
 

The encoder takes a 2D foot image as input and processes it through several layers to extract 
meaningful features. These features capture the shape, texture, and spatial relationships within the 
image, providing a compressed representation of the foot. Additionally, the encoder generates a binary 
segmentation mask that distinguishes the foot region from the background, and a set of anatomical 
keypoints in the 2D space. 
 

The decoder takes the concatenated feature vector and 2D keypoints as input and maps them onto the 
final output parameters. These parameters include the PCA coefficients that define the 3D foot shape 
from our parametric shape model [4], as well as the rotation and translation values that determine the 
foot's pose in 3D space relative to the camera reference system. 
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Figure 1: Model architecture 

 

3.1. Intermediate heads 

The model is designed with two output heads that facilitate the creation of intermediate representations 
[32] essential for the final 3D reconstruction of the foot. 
 

Segmentation output: This head generates a binary mask that highlights the foot within the input image. 
By distinguishing the foot from the background, the mask provides a clear and detailed outline of the 
foot's shape. This segmentation is crucial for isolating the foot and ensuring accurate subsequent 
processing steps. 
 

Keypoints output: This head projects nine keypoints through a dense layer [33], locating critical 
anatomical landmarks of the foot. These keypoints include important regions such as the heel, the arch, 
and the tips of the toes. The accurate identification of these points is vital for capturing the geometric 
features of the foot, which are essential for constructing a precise 3D model. 
 

3.2. Main heads 

The decoder processes the encoded information, integrating the keypoints output to derive the final 
parameters necessary for 3D model reconstruction. 
 

PCA output: These parameters define the principal components that describe the foot's shape variation. 
By reducing the dimensionality of the data, they capture the most significant features necessary for 
accurately modeling the foot's geometry. 
 

Rotation output: These parameters specify the orientation of the foot. They are crucial for positioning 
the 3D model correctly relative to the input image, ensuring that the reconstructed model aligns 
accurately with the original perspective. 
 

Translation output: These parameters determine the foot's position within the 3D coordinate system. 
They are essential for translating the foot to its correct spatial location, providing an accurate 
representation of its placement in the reconstructed model. 
 

The model reconstructs a detailed 3D mesh of the foot using PCA parameters and the mean shape. 
This mesh captures the foot's unique geometry with approximately 5,000 vertices. Following 
reconstruction, rotation and translation parameters are applied to align and position the mesh accurately 
within the 2D pixel space, ensuring it reflects the correct orientation and location observed in the input 
image. 
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4. Training 

The data that our model learns from determines how effective it is. The training dataset is the foundation 
of our model's power in the context of 3D modeling from 2D photos. This section explores the details of 
our training data, including its origin, preparation, and model training.   
 

4.1 Data 

Our training process utilized two distinct datasets: a set of 500K augmented real-world samples and a 
collection of 1M synthetic samples. These datasets collectively form the basis for training our deep 
learning model to generate accurate 3D models from 2D images. Every training sample is composed 
by: a 2D image and a camera matrix K as input; and a set of keypoint coordinates, binary mask, 2D 
projection points, PCA shape parameters, rotation parameters and translation parameters as ground 
truth. 
 

Augmented Avatar 3D Feet dataset: This dataset consists of real-world images taken from 3 different 
points of view (one upper view and two lateral views) as shown in Figure 2 that have been augmented 
to enhance diversity and variability [34]. Augmentation techniques include rotation, scaling, and color 
adjustments and background replacement, ensuring the model learns from a broad spectrum of real-
world scenarios. These samples have been selected from the Avatar 3D Feet dataset, in a certified set 
of high quality and minimal error data [5]. 
 

 

Figure 2: Real sample 

 
Synthetic Samples: Comprising entirely synthetic images generated using computer graphics 
techniques, this dataset provides additional training examples that cover a wide range of simulated 
conditions. Synthetic data allows the model to learn robustly across various scenarios that may not be 
represented adequately in real-world data alone [35], [36], [37]. This meshes have been generated by 
random PCA parameters following 3 times the standard deviation, then covered with a random texture 
(selected from a set of 1500 textures extracted from the Avatar 3D Feet dataset) and projected into a 
random background as you can see in Figure 3. Using a virtual camera, over 20 points of view have 
been placed in order to represent a complete set of possibilities. 
 

 

Figure 3: Synthetic sample. On the left, the generated mesh with the texture. 
On the right, the generated mesh projected on a random background. 
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4.2 Training process 

The model has been designed and trained on Pytorch Lightning for 50 epochs using Adam [38] 
optimizer, learning rate of 1e-4 with cosine decay, batch size of 36 due to resource limitations and 3 
GPUs. Training process takes about 4 days to complete. 

5. Metrics 

5.1. Evaluation metrics during training 

Mean Vertex Error: this metric is used to evaluate the accuracy of 3D reconstructions by measuring the 
average distance between corresponding vertices of the predicted and ground truth 3D meshes. In this 
context, MVE functions similarly to the Mean Absolute Error (MAE) but is specifically adapted for 3D 
coordinates. 

MAE = 1
N � �|y��
 − y�� | + �y�

�
 − y�
�� + |y��
 − y�� |�

�

���
 

 

where y��, y�
�
 and y��  are the first, second and third components of the 3D predicted vertex n and y��
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 are the first, second and third components of the 3D ground truth vertex n. 

 

Projection Error: this metric quantifies the discrepancy in pixels between the projected 3D model points 
and their corresponding 2D image points. It measures how accurately the 3D points, when projected 
onto a 2D plane using a perspective transformation, match the actual 2D coordinates in the image. 
Lower values indicate a more precise alignment of the 3D model with the image. 
 

Keypoint Accuracy: is a metric used to evaluate the precision of estimated keypoints in relation to their 
true positions (ground truth). It is calculated as the percentage of correctly predicted keypoints that fall 
within a predefined threshold distance from the ground truth keypoints. This threshold is usually 
specified in pixels and defines the maximum allowable deviation for a prediction to be considered 
accurate. If the estimated keypoint deviation from the ground truth is less than or equal to this threshold, 
the prediction is counted as correct. 
 

Segmentation Accuracy: The Dice coefficient [39] for binary segmentation is the metric chosen for 
evaluating the overlap between the predicted binary segmentation mask and the ground truth mask. It 
is calculated as twice the area of overlap divided by the total number of pixels in both the predicted and 
ground truth masks. This metric ranges from 0 to 1, with higher values indicating a better match and 
thus more accurate segmentation. 
 

5.2. Evaluation metrics during testing 

The key metric used for evaluation was the Procrustes-Aligned Mean Per Joint Position Error (PA-
MPJPE) [32]. This metric measures the average Euclidean distance between the predicted 3D vertex 
positions and the ground truth, after performing a Procrustes analysis to align the predicted pose with 
the ground truth, effectively removing the effects of translation, rotation, and scale. 

6. Results 

6.1. Training results 

For the evaluation of the training of this model we have obtained the following metrics over a 500K 
samples test dataset, shown in Table 1: 
 

Metric Score 
Mean Vertex Error 1.9 mm 

Projection Error 12 px 
Segmentation Accuracy 0.99 

Keypoint Accuracy 80% 

Table 1: Metric scores 
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6.2. Quantitative evaluation 

To quantitatively assess the accuracy of our 3D foot reconstruction model from 2D images, we utilized 
a subset of 674 samples from the 3D Avatar Feet [4] dataset. 
Our model achieved a PA-MPJPE of 0.9 millimeters on this dataset, indicating a high level of accuracy 
in capturing the detailed structure of the foot. A detailed heatmap of the vertex error is shown in Figure 

4: Error map in millimetersFigure 4 showing how the mean vertex error is distributed over the foot surface. 

 
Figure 4: Error map in millimeters 

 

6.3. Qualitative evaluation 

The visual evaluation of the process involved observing the reconstructions projected onto various 
images and videos. Figure 5 presents several examples that illustrate the results of the reconstruction 
process. This detailed analysis aimed to verify the accurate estimation of the shape, position, and 
orientation of the reconstructed foot on the input image. 
 

 
Figure 5: Examples of reconstructions: (a) input image, (b) 3D reconstructed foot 

and (c) 3D foot projected on the image 
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6.4. Real-Time Inference 

The model's ability to perform real-time inference was also evaluated in Table 2. During testing, the 
model consistently produced accurate 3D reconstructions from 2D images within milliseconds, 
demonstrating its potential for use in dynamic applications where quick turnaround is essential. 
 

Device Model type Inference Time 
Computer CPU (11th Gen Intel(R) Core(TM) i7-11800H) Onnx Model 29 ms 
Computer GPU (NVIDIA GeForce RTX 3070) Pytorch Model 25 ms 
Smartphone GPU (Mali-G72 MP18) TF Lite Model 40 ms 

Table 2: Inference time 

7. Conclusions 

In this study, we introduced a novel neural network-based approach for accurate 3D foot reconstruction 
from a single 2D image. Our method leverages the power of deep learning combined with statistical 
shape modeling through Principal Component Analysis (PCA) to infer 3D foot morphology. The 
integration of binary segmentation masks and 2D keypoint estimation further enhances the precision of 
the model, ensuring detailed and anatomically accurate reconstructions. 
 

The training process, utilizing both synthetic and augmented real-world datasets, has demonstrated the 
model's robustness and adaptability across diverse scenarios. The validation on a large dataset 
resulted in a Procrustes-Aligned Mean Per Joint Position Error (PA-MPJPE) of 0.9 mm, underscoring 
the method's high accuracy. 
 

The real-time capabilities and high precision achieved with a single image open up new possibilities for 
augmented reality applications, such as virtual try-on solutions for footwear and innovative 3D foot 
capture experiences. The ability to provide a complete foot shape rather than just a bounding box, along 
with precise position and rotation information, enables the development of more accurate, fluid, and 
realistic virtual try-on applications compared to current solutions. 
 

Moreover, advancements in foot capture using mobile devices are promising. Our method enables a 
faster, smoother, and more natural capture process compared to existing systems that rely on multiple 
photographs. This could significantly enhance accuracy by incorporating additional images or selecting 
optimal samples during the capture process. Additionally, real-time reconstruction facilitates 
synchronization between model generation and smartphone accelerometers. This allows for metric 
scale calculation without the need for known-size reference objects, thereby increasing the 
methodology's versatility. This represents a significant improvement for both clinical applications and 
consumer product selection or customization, including insoles, footwear, and orthotics. 
 

In conclusion, our proposed approach marks a significant advancement in 3D foot reconstruction from 
2D images, combining efficiency, accuracy, and versatility. Future work may explore the extension of 
this method to other body parts and further optimization for specific applications, enhancing its utility 
and impact in the field of computer vision and beyond. For example, using a dataset captured with 
Move4D system [40], we are extending this methodology to articulated full-body models, which could 
have even greater implications for augmented reality applications beyond virtual try-ons and 3D human 
body capture. Potential applications include advancements in healthcare and sports, demonstrating the 
broad impact and versatility of our approach. 
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