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Abstract

Advancements in mobile technology and artificial intelligence have transformed body composition
assessment, providing a practical alternative to traditional methods like air displacement
plethysmography (ADP), dual energy X-ray absorptiometry (DXA), and expensive optical booth
scanners for 3D body measurement. This paper evaluates the competitiveness of Size Stream’s mobile
3D body scanning applications against these alternatives and compares their performance with two-
point and four-point bioimpedance devices. Based on a substantial dataset of 209 samples across 118
subjects, body composition was assessed using a four-compartment model, incorporating DXA,
bioimpedance analysis, body volume measurements, and body weight. Our findings demonstrate that
mobile device 3D scanning achieves impressive accuracy and reliability, closely aligning with full booth
results and outperforming conventional bioimpedance scales. The paper details the methodology, data
analysis, and comparative metrics, highlighting the potential of mobile devices as viable tools for body
composition assessment. This advancement not only enhances accessibility but also ensures precision
and accuracy in health and fitness applications.

Keywords: 3D body scanning, machine learning, mobile scanning, body fat measurement, body
composition

1. Introduction

Body composition data plays a crucial role in managing and monitoring health. While some individuals
may wish to track their progress in weight loss or muscle gain as part of a diet or training program,
others may seek measurements for medical reasons. Body fat percentage is closely linked to various
diseases and health risks, making it a more informative metric than body mass index (BMI), which is
often inadequate for certain body types, particularly those with high muscle mass. Transitioning from
BMI to these more precise measurements can provide users with critical information and provide them
with @ much more accurate assessment of their health. Especially important is the ability to continually
monitor this information over time.

Measuring body fat can be challenging for the average consumer. The gold standard for body fat
measurement is the four-compartment (4C) model that integrates multiple measurements using an
array of technologies including dual energy X-ray absorptiometry (DXA) and air displacement
plethysmography (ADP) [1]. However, these large and costly systems require professional operation in
healthcare or research settings, making them impractical for regular monitoring or home use. Many
people turn to bioimpedance devices for body fat measurement, most commonly in the form of foot-to-
foot scales; but these devices can be lacking in accuracy, or in some cases expensive and complicated
to use [2]. Optical body scanners offer another alternative, using 3D body shape analysis to provide a
better understanding of fat distribution, which has been shown to provide accurate body fat
measurements [3]. Yet, like DXA and the more accurate bioimpedance devices, these technologies can
also come with high costs and accessibility challenges.

Mobile phone 3D body scanners present a promising solution to this problem, offering the body fat
estimation quality of 3D body optical body scanners, but as an accessible and affordable option for
everyday users [4]. In this paper, we introduce our latest body fat estimation technology, which
leverages the accuracy of our 3D booth scanner within our mobile phone solution. We present results
from our latest algorithms, tested on 209 scans from a cohort of 118 individuals, which demonstrate
favorable performance compared to similar 3D body scanning technologies and bioimpedance scales.
Body Fat measurements are a key part of Size Stream’s suite of body composition metrics which can
be easily accessed with just a mobile phone camera.
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2. Methods
2.1. Mobile scanning and pairing with 4C Body Fat measurements

In coordination with Texas Tech University (Lubbock, Texas, USA) [4], we received a number of paired
scans, where participants had utilized our 3D booth scanning system (Size Stream, Cary, NC, USA),
our mobile phone scanning system, and had also been measured via 4C-calculated body fat mass [1],
[3]. The DXA scans were performed using a Lunar Prodigy scanner (General Electric, Boston, MA,
USA) with the enCORE software. Bone mineral (Mo) was estimated by dividing DXA bone mineral
content by 0.9582. Total Body Water (TBW) was obtained using a BIS system (SFB7, ImpediMed,
Carlsbad, CA, USA). Body Volume (BV) and Body Mass (BM) were measured using air displacement
plethysmography (ADP) using a BOD POD® device (Cosmed USA, Concord, CA, USA). In total, the
4C equation from [1] was used to estimate whole-body fat mass:

FatMass (kg) = 2.748 - BV — 0.699 - TBW + 1.129 - Mo — 2.051 - BM
Equation 1. Four component (4C) formula for measuring total body fat mass from Wang et al. [1].

An initial set of 246 scans from 129 subjects were paired with 4C body fat measurements from the
Texas Tech study. Data quality was assessed visually from the mobile scan images, looking for obvious
errors such as subjects wearing baggy clothing or more than one person in the image. In addition, there
were some clear data entry issues with respect to patient metadata (such as age), and these scans
were discarded. After data cleaning, a total of 209 scans from 118 subjects remained with 84 female
(Table 1.)

e ig 3 at ¥ p ass (kg

Gender Subjects  Scans Age Weight (kg) BMI Body Fat %  Fat Mass (kg)
Mean Std Mean Std Mean Std Mean Std Mean Std

All 118 209 23.24 6.51 69.97 13.84 24.78 4.16 26.66 9.11 18.82 8.41
Female 84 138 22.57 6.02 65.56 11.93 24.60 4.29 30.98 7.31 20.92 8.35
Male 34 71 24.56 7.24 7855 13.34 25.14 3.91 1825 5.80 14.73 6.94

Table 1. Population statistics for the study.

2.2. New formulations for body fat mass

Images from the mobile phone scans were processed with our computer vision algorithms to construct
3D models and take body measurements. Although our mobile scanning technology roughly equals that
of our optical 3D booth scanners, the regressors were adapted for a slightly better fit. Three of our
internal body composition metrics were utilized in the slightly modified regressor: Body Fat Mass, Lean
Body Mass, and FatMassIndex. Performance metrics shown in subsequent figures (Figure 1, Tables
2,3) were determined via a 10-fold cross validation scheme. With this method, 10% of the subjects were
randomly chosen for testing, and the other 90% were used to train a linear regressor utilizing the 3
variables in Equation 2. This process was repeated 10 times until there were unbiased estimates for all
subjects. The final formula (Equation 2) was determined via regression with the entire dataset, performs
slightly better than the 10-fold estimates, and utilizes the following coefficients:

Total Fat Mass (kg)
=4.51+1.63 - Gender + 1.20 - BodyFatMass — 0.07 - LeanBodyMass
— 0.005 - FatMassIndex

Equation 2. Regressed formula using Size Stream fitness metrics for Body Fat prediction.
Here Gender refers to a simple variable set to 1 for male and 0 for female.
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Each component used in the final regressor are created from the 3D body measurements as follows:

BodyFatMass = Weight (kg) - BodyFat%
BodyFat% (Abdomen < 40.75) = 48.837 — 7.2745 - Gender + 1.192 - RThigh —
17.387 - MSI

3. BodyFat% (Abdomen > 40.75) = —1.1789 — 3.5143 - Gender + 1.3664 -
Abdomen — 0.0069449 - BodySurfaceArea

RBicep+LBicep+RCalf+LCalf+RThigh+LThigh
MaximumStomach

4. Muscle to Stomach Index (MSI) =

Equation 3. Regressed formulae for body fat mass using 3D body measurements. Gender = 1 for male,
0 for female. Except for BodySurfaceArea (which is in inches?), all units are in units of inches
of circumference, with right or left designated as L or R; i.e., RBicep=RightBicepCircumference

LeanBodyMass = Weight (kg) — BodyFatMass

Equation 4. Formula for Lean Body Mass

. MuscleFactor
1. FitnessIndex = ————

BodyFat%
RBicep+Chest+RThigh+RCalf+Seat
2. MuscleFactor (male) = P £
StomachMax
RBicep+Chest+RThigh
3. MuscleFactor (female) = P £
StomachMax

Equation 5. Definition of Size Stream Fitness Index using body measurements. Gender = 1 for male,
0 for female. R and L refer to left and right, all units are circumference in inches.

Although we present only results for Body Fat here, Size Stream currently provides a wide range of
body composition metrics that relate to health and fitness. The full list includes Body Fat %, Total Fat
Mass (kg), Body Mass Index, Lean Body Index, Fat Mass Index, Waist to Height Ratio, Waist to Hip
Ratio, Resting Metabolic Rate (kcal/day), Lean Body Mass (kg), Fitness Index, Bone Mineral Content
(pounds), Lean Mass Legs (pounds), Visceral Adipose Tissue (pounds), and Body Surface Area
(inches?).

3. Results
3.1. Performance and Bland-Altman plots

The performance of our mobile phone measurement algorithm for the 209 scans is plotted below
(Figure 1A, 1B). The R? for Body Fat % and Total Fat Mass were 0.804 and 0.898, respectively,
showing a high correspondence with the 4C measures. Multiple scans were taken for many
individuals as part of the Texas Tech study, sometimes a few months apart. For this reason,
presented numbers include all of these scans separately. However, if multiple scans and 4C body
fat measurements are instead averaged together, the performance across the 118 individuals are
essentially unchanged, with R2=0.804, 0.902 for body fat percentage and total fat mass,
respectively. The error is fairly consistent over a range of both body fat percentage and total fat
mass, as can be seen in the Bland-Altman plots (Figure 1C, 1D). However, both show a slight
overprediction at low body fat, and slight underprediction at high body fat. Overall, we find the
results to compare favorably with both similar 3D body scanning technologies (Table 2) and
bioimpedance scale devices (Table 3).
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Fig. 1. Performance of the new regressor for Body Fat across 204 mobile phone scans compared to 4C body fat
measurement (209 scans, 118 individuals). These predictions reflect the results of a10-fold cross validation

scheme, and perform slightly worse than the final regressor (Equation 2).

3.2. Comparison to other 3D body scanning solutions

Through prior efforts at Size Stream with our SS20 optical 3D booth scanners, formulas have been
adapted to calculate several body composition metrics from body measurements, including total fat
mass [3]. The performance has since been slightly improved internally, and up-to date numbers are
presented below (Table 2). We also offer comparison to a similar work which utilizes a 4-photo 3D
mobile body scanning solution to predict DXA scan results [5]. Overall, the mobile phone system is
roughly comparable to our booth scanner solution, offering an R? = 0.804 for body fat % and R? = 0.898
for total fat mass compared to 0.82 and 0.91 for our booth scanner, respectively. In addition, the root
mean square of error is under 3 kg for total fat mass, and just above 4% for body fat percentage.

Name

Body Fat % Total Fat Mass (kg)
Bias (95%LoA) RMSE R R? Bias (95%LoA) RMSE R R2

Scanner Type n

Qiao et. al 2024
Size Stream Mobile
Size Stream SS20

(
Mobile phone scan, 4-photo 119 1.62 (-9.2; 12.5) 554 084 0.71 0.93 (-6.4; 8.3) 3.76 091 0.83
Mobile phone scan, 2-photo 118  -0.02 (-7.9; 7.9) 4.03 0.90 0.80 -0.01 (-5.2;5.2) 2.6 R0 5880 90
Booth scanner 175 0.15 (-7.1; 7.2) 3.68 091 0.82 0.12(-5.2; 5.4) 274 095 0091

Table 2. Comparison to other 3D body scanning solutions. The predictions for Size Stream Mobile reflect the
results of a 10-fold cross validation scheme, and perform slightly worse than the final regressor (Equation 2).
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3.3. Comparison to bioimpedance devices

Bioimpedance devices offer another simple method to measure body fat percentage. Most similar to
our technology in terms of ease of use and cost are the foot-to-foot bioimpedance scales, which
additionally offer a simple method to measure body fat percentage at home. We refer to a survey study
of these devices for comparison [2], and find our method to be substantially more accurate than a large
cohort of 10 foot-to-foot bioimpedance scales. Although we approximately fall in line with the more
expensive and difficult to use hand-to-hand and hand-to-foot (octapolar) devices, two of these devices
did offer substantially better performance than our solution, one a research-grade medical device (Table
3). We find the constant error to also be quite low; our solution provides the smallest bias of any of the
devices in the table.

Body Fat %

Name Scanner Type Bioimpedance I
R?2 CE SEE
Weight Watchers Bioimpedance device Foot-to-foot 0.33  0.90 7.50
HAWANA Bioimpedance device Foot-to-foot 0.36 290 7.30
RENPHO Bioimpedance device Foot-to-foot 0.42 -1.40 7.00
Vitagoods Form Fit Bioimpedance device Foot-to-foot 0.45 -1.10 6.80
INEVIFIT Bioimpedance device Foot-to-foot 0.47 140 6.60
Wyze Bioimpedance device Foot-to-foot 0.57 3.60 6.00
Tanita UM-081 Bioimpedance device Foot-to-foot 0.62 0.60 5.60
Withings Body Cardio Bioimpedance device Foot-to-foot 0.62 -0.40 5.60
Tanita BC-554 Ironman Bioimpedance device Foot-to-foot 0.62 0.70  5.60
Secca 804 Bioimpedance device Foot-to-foot 0.75 11.70 4.50
Omron HBF-516 Bioimpedance device Hand-to-foot (octapolar, consumer grade) 0.78 3.30  4.30
Omron HBF-306 Bioimpedance device Hand-to-hand 0.80 -3.50 4.10
Size Stream Mobile Mobile phone 3D scan 0.80 -0.02 4.02
Tanita BC-568 Inner Scan  Bioimpedance device Hand-to-foot (octapolar, consumer grade) 0.81 -1.40 4.00
InBody H20N Bioimpedance device Hand-to-foot (octapolar, consumer grade) 0.88 -0.10 3.10
Seca mBCA 515-514 Bioimpedance device Hand-to-foot (octapolar, research grade) 0.88 -0.20 3.20

Table 3. Comparison to bioimpedance device technologies for Body Fat %. Shown for comparison are the
coefficients of determination (R)?) for each prediction, as well as the constant error (CE) and standard error of the
estimate (SEE). The predictions for Size Stream Mobile reflect the results of a 10-fold cross validation scheme,
and perform slightly worse than the final regressor (Equation 2).

4. Discussion

Interest in measuring and tracking body fat percentage, as opposed to more rudimentary measures
such as BMI, appears to be growing significantly in recent years. This shift reflects a broader
understanding of health and fithess, emphasizing the importance of body composition. In addition,
smartwatches and other advanced devices have showcased the clear utility of technology in continual
monitoring of more advanced fitness and health metrics, making it easier for individuals to stay informed
about their body. Finally, the rising popularity of weight loss medications underscores the importance
of accurately measuring and monitoring body fat, creating a compelling use case for more precise
methods.

Although accurate body fat measurement has been historically locked behind expensive and
cumbersome technologies, recent advances in bioimpedance measurement devices have provided a
more convenient method to measure at home. 3D body measurement may be a next step in this
progression, as it allows for the accuracy of the higher-quality bioimpedance devices with an arguably
more simple and accessible process; a quick scan that requires only your mobile phone’s camera.

In this paper, we have shown that the accuracy of our mobile scanning technology is approaching the
accuracy of Size Stream’s larger booth scanning systems to provide an array of body composition
metrics. In addition, we find the technology to be substantially more accurate than several bioimpedance
scales, rivaling the accuracy of some of the more sophisticated devices. With continued work at Size
Stream and with our partners we hope to continue improving the performance to acquire even more
accurate measurements.
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